
ASG-Manager Products™

Procedures Language
Version: 2.5.1

Publication Number: MPR0500-251-PROCL
Publication Date: November 2001

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this
information and disclosure to third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by

any means, without the express written consent of Allen Systems Group, Inc.

© 1998-2001 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples, Florida USA | asg.com

1333 Third Avenue South, Naples, Florida 34102 USA Tel: 941.435.2200 Fax: 941.263.3692 Toll Free: 1.800.932.5536

© 2001 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (941) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

• Product name, version number, and release number

• List of any fixes currently applied

• Any alphanumeric error codes or messages written precisely or displayed

• A description of the specific steps that immediately preceded the problem

• The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

• Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578

1.941.435.2201

Secondary Numbers:

800.227.7774

800.525.7775

941.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.300 49.89.45716.400 support.de@asg.com

Singapore 65.224.3080 65.224.8516 support.sg@asg.com

All other countries: 1.941.435.2201 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578
1.941.435.2201
Secondary Numbers:
800.227.7774
800.525.7775
Fax:
941.263.2883

Asia 011.65.224.3080 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 New Zealand 00.800.9932.5536

Denmark 00.800.9932.5536 South Korea 001.800.9932.5536

France 00.800.9932.5536 Sweden/Telia 009.800.9932.5536

Germany 00.800.9932.5536 Switzerland 00.800.9932.5536

Hong Kong 001.800.9932.5536 Thailand 001.800.9932.5536

Ireland 00.800.9932.5536 United Kingdom 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536

Japan/IDC 0061.800.9932.5536 All other countries 1.941.435.2201

ASG Web Site
Visit http://www.asg.com, ASG�s World Wide Web site.

Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/products/suggestions.asp

If you do not have access to the web, FAX your suggestions to product management at (941)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication�s front cover.

http://www.asg.com/products/suggestions.asp
http://www.asg.com

i

Contents

Preface .xi
About this Publication . xi

Publication Conventions. xii

1 Introduction . 1
User-defined Commands . 2

2 Basic Concepts . 5
Setting Up Executive Routines. 6

Using Executive Routines . 6
From the Command Area . 6
Line Command . 6
Cursor Spatial Command . 7

Components Of Executive Routines . 7

Directives . 8

Labels . 8

Comments . 9

Variables . 10

Execution Control . 10

Functions . 12
User-defined Functions . 13
COBOL Argument Block . 13
PL/I Argument Block . 14
Assembler Argument Block . 15
General Notes on Argument Blocks . 15

Outputting Information . 16

Manipulating Buffers . 17

Debugging . 17

ASG-Manager Products Procedures Language

ii

Parsing . 18

Efficiency And Readability. 20

3 Setting Up And Using Executive Routines . 21
Introduction . 21

Corporate Executive Routines . 22

Setting Up EXECUTIVE-ROUTINE Members. 23

Executing Executive Routines From The Command Area . 24

Line Commands . 24

Line Commands Example . 25

Cursor Spatial Commands . 26

Cursor Spatial Commands Example. 27

Using Prefix Commands/Resolving Name Conflicts . 27

4 Variables. 29
Variables and Parameters . 30

User-defined Variables . 31

Arrays. 31
System-assigned Variables . 33
User-assigned Variables . 33

Command Variables . 33

Profile Variables . 34

Global Variables . 34

Local Variables . 35

Parameter Variables . 36

System Variables . 37
&BUFN. 37
&CCOD. 37
&CCOL . 37
&COLO. 38
&CROW . 38
&CURL . 38
&CURS . 38
&DATE . 38
&DICT . 38
&ECOD. 39

Contents

iii

&ENAM . 39
&ENVO. 39
&ENVM . 39
&ENVT . 40
&LINC . 40
&LINO . 40
&LOGO. 40
&MODE . 41
&MSLN. 41
&MSLV. 41
&MSNO . 41
&MSTX. 41
&PNUM . 41
&PVAL . 42
&SCOD. 42
&STAT . 42
&TIME . 42
&TRMC . 42
&TRMR . 42
&USER . 42

Return Codes . 42

5 Expressions. 45
Introduction . 45

Full Evaluation . 47

Numeric Expressions . 49

6 Example Executive Routines . 51
MP-AID Copy (PROCL-01). 51

Condensed MP-AID List (PROCL-02) . 52

FASTQUIT (PROCL-03) . 54

Quick Sign On (PROCL-04) . 54

Decimal Conversion (PROCL-05) . 55

All Occurrences (PROCL-06) . 56

Overlay (PROCL-07) . 57

PF Key Settings (PROCL-08) . 58

Compound Interest (PROCL-09) . 59

ISPF Read, Write and Edit . 60

ASG-Manager Products Procedures Language

iv

ISPF Variables. 61

7 Executive Commands . 63
ARRAYGEN . 64
ARRAYGEN Syntax . 65

ARRAYSORT . 65
ARRAYSORT Syntax . 66

BUILD . 66
Building a KEPT-DATA List from an Array . 67
Building an Array from a KEPT-DATA List . 68
BUILD Syntax . 69
CLOSEF Syntax . 71
Obtaining Security, Current Status, and History Information. 73
Obtaining Full Status Information . 76
Suppressing Information . 77
Maintaining Variables for Two or More Members. 78
Obtaining Condition Information . 80
Example. 81
DACCESS Syntax. 83
Expanding a Member for a Particular Language . 85
Using a Specific Form and Version of Any Processed Items . 85
Generating Local Names as Variables . 86
Giving Specified Alias Names . 86
Example. 87
Maintaining Variables for Two or More Members. 89
DEXPAND Syntax . 91

DRELEASE . 91
Rules on Releasing Variables . 92
DRELEASE Syntax . 93

DRETRIEVE. 94
Retrieving Repeating Clauses . 95
Retrieving Used-By or Reference Information . 96
Example 1 . 99
Example 2 . 99
Specifying Variable Names. 100
Suppressing Information . 101
Accessing DEXPANDed Information . 102
Example. 103
Retrieving Unique Key Identifiers . 103
Maintaining Variables for Two or More Members. 104
DRETRIEVE Syntax . 105

RELINQUISH . 106
RELENQUISH Syntax . 107

Contents

v

RESERVE . 107
RESERVE Syntax. 108

SENDF . 108
Sending Output to a USER-MEMBER. 109
Sending Output to a Sequential Dataset . 110
Sending Output to a Partitioned Dataset . 112
SENDF Syntax . 112

SREAD . 113
SREAD Syntax . 114

8 Directives . 115
CALL . 116
CALL label-name Option . 117
CALL ARRAY Option . 117

COMMAND. 118

DO. 119

DROP . 121

EXIT. 121
Example 1 . 122
Example 2 . 122

GLOBAL . 122

GOTO. 123
Examples . 123

IF. 123
Example 1 . 125
Example 2 . 125
Example 3 . 126
Example 4 . 126

INTERPRET . 126
Example 1 . 127
Example 2 . 128
Example 3 . 128

ITERATE. 128
Example. 129

LEAVE. 129
Example. 129

LITERAL. 130

LOCAL. 131

ASG-Manager Products Procedures Language

vi

MESSAGE . 131
Example 1 . 132
Example 2 . 132

MPR . 133

MPRE . 134

MPXX. 134
Example. 135

NOP . 135

PARSE . 135
Example 1 . 136
Example 2 . 137

PARSEOPTION . 137

PROFILE. 137

RELEASE . 138
Erasing All Variables of a Particular Type . 139
Erasing a Selection of Variables of a Particular Type . 139
RELEASE Syntax . 140

RETAIN . 140

RETURN . 140

SET . 141
Examples . 141

SIGNAL . 142

STACK. 143

TRACE. 144
Example. 145

TRANSFER . 145

VLIST. 146
Listing Particular Variables. 147
Listing All Variables of a Particular Type . 147
Listing a Selection of Variables of a Particular Type . 147
Listing Particular Variables. 147
Listing All Variables of a Particular Type . 147
Listing a Selection of Variables of a Particular Type . 147
Examples . 148
VLIST Syntax . 149

WRITEF. 149
Example 1 . 151
Example 2 . 151

Contents

vii

9 Functions . 153
ABBREV . 155
Examples . 155

ARG . 156
Examples . 156

ARRAYHI . 157
Example. 157

ARRAYLO. 157
Example. 157

BIN . 158
Examples . 158

CENTER . 158
Examples . 158

CLIENTI . 158
Example. 159

CLIENTN. 159
Example. 159

CLIENTU. 159
Example. 159

COPIES . 160
Examples . 160

DB2TYPE. 160

DIVCAPT. 160
Examples . 161

DIVOBJN. 161
Example. 161

DIVOBJT. 161
Example. 161

EDDATE . 161
Example. 162
Example. 163

EXTRACT . 163
DSN Keyword. 165
Primary Command Keyword . 165
Examples . 166
LCOFF Keyword . 166

FDO . 166
Example. 167

ASG-Manager Products Procedures Language

viii

GETSVRM. 167
Examples . 167

GETTOKEN . 168
Example. 168

GETUDSN . 168
Example. 168

HEX . 169
Examples . 169

INSERT . 169
Examples . 169
Examples . 170

LEFT . 170
Examples . 170

LENGTH . 170
LENGTH function . 171
Implicit Length Function. 171

LOWER . 171
Examples . 171

MAX . 172
Example. 172

MEMTYPE . 172
Example. 173

MIN. 173
Example. 173

MPRAID . 173

MPRCMPW. 174

MPRDDPW . 174

MPRSU. 174

MPRUCLS . 174

MPRUDSN. 175

NDATE. 175
Example. 175
Example. 176
Examples . 177

PACK . 177
Examples . 177

PARSABLE . 178

Contents

ix

POS . 178
Examples . 178

PTIME . 178
Examples . 179

REPSTR. 179
Examples . 179
Example. 180

RIGHT . 180
Examples . 180

ROOT . 180
Examples . 181

SEARCH . 181
Examples . 181

SERVERN . 182
Example. 182

STIME . 182
Example. 182

STRIP . 182
Examples . 183
SUBSTR Function . 184
Implicit Substring Function. 184

SUBTASK . 185
SUBTASK Function . 185

SUBTENV . 186
Example. 187

TRANSLAT. 187
Examples . 187

TRUNCATE . 187
Examples . 188

TYPE . 188
The TYPE Function . 188
Implicit Type Function . 189

UPPER . 189
Examples . 189

VALUE. 190
Example 1 . 190
Example 2 . 190

WORD . 191
Examples . 191

ASG-Manager Products Procedures Language

x

WORDINDX . 191
Examples . 191

WORDLEN . 191
Examples . 191

WORDS . 192
Example. 192

10 Debugging. 193
Introduction . 193

SET TRACE . 194
Procedures Language Trace: Selecting Procedures . 194
Procedures Language Trace: Selecting Variables. 195
Procedures Language Trace: Information Available . 196
Manager Products Trace: Information Available . 197
Examples . 197
Output Media . 198
SET TRACE Syntax . 198

QUERY TRACE . 199
QUERY TRACE Syntax. 200

Glossary . 201

Index. 205

xi

Preface

This ASG-Manager Products Procedures Language publication describes how to write
executive routines. It is assumed that you have some knowledge of programming.
ASG-Manager Products (herein called Manager Products) is an integrated set of
dictionary/repository-driven products developed by ASG for use on IBM System/370,
30xx and 4300 series, and plug compatible, machines.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions
or concerns regarding the installation or use of any ASG product. Telephone technical
support is available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this
publication or on the Manager Products.

About this Publication
The ASG-Manager Products Procedures Language consists of these chapters:

• Chapter 1, "Introduction," gives you an introductory overview of the procedures
language, with references to related information in other publications.

• Chapter 2, "Basic Concepts," gives the main features of the procedures language.

• Chapter 3, "Setting Up And Using Executive Routines," describes types of
executive routine and the different ways of calling them.

• Chapter 4, "Variables," describes the different types of variables and their uses.

• Chapter 5, "Expressions," describes the different types of expression and how they
are evaluated.

• Chapter 6, "Example Executive Routines," gives examples of how you can use
executive routines.

• Chapter 7, "Executive Commands," describes specifications of commands that can
only be used in executive routines.

ASG-Manager Products Procedures Language

xii

• Chapter 8, "Directives," gives specifications of instructions that control the order in
which instructions are executed, or perform input or output.

• Chapter 9, "Functions," gives specifications of elements of expressions that
manipulate strings or give information about the environment.

• Chapter 10, "Debugging," is an outline of the facilities available for debugging, and
gives details of commands available for this purpose.

Publication Conventions
Allen Systems Group, Inc. uses these conventions in technical publications:

The following conventions apply to syntax diagrams that appear in this publication.

Diagrams are read from left to right along a continuous line (the "main path"). Keywords
and variables appear on, above, or below the main path.

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database,
program, command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign
(+) is inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your
particular situation. For example, you would replace
filename with the actual name of the file.

Monospace Characters you must type exactly as they are shown.
Code, JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.

Vertical Separator Bar (|)
with underline

Options available with the default value underlined (e.g.,
Y|N).

Convention Represents

�� At the beginning of a line indicates the start of a statement.

At the end of a line indicates the end of a statement.

At the end of a line indicates that the statement continues on the line
below.

At the beginning of a line indicates that the statement continues from the
line above.

��

�

�

Preface

xiii

Keywords are in upper-case characters. Keywords and any required punctuation
characters or symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

A required keyword appears on the main path:

An optional keyword appears below the main path:

Where there is a choice of required keywords, the keywords appear in a vertical list; one
of them is on the main path:

or

Where there is a choice of optional keywords, the keywords appear in a vertical list,
below the main path:

The repeat symbol, <<<<<<, above a keyword or variable, or above a whole clause,
indicates that the keyword, variable, or clause may be specified more than once:

A repeat symbol broken by a comma indicates that if the keyword, variable, or clause is
specified more than once, a comma must separate each instance of the keyword, variable,
or clause:

Convention Represents

� �COMMAND

� �COMMAND KEYWORD

� �� COMMAND
KEYWORD

� �COMMAND
KEYWORD1
KEYWORD2
KEYWORD3
KEYWORD2

� �COMMAND KEYWORD1

KEYWORD3
KEYWORD2

� �COMMAND
KEYWORD1
KEYWORD2

� �
<<<<<<<<

COMMAND variable

ASG-Manager Products Procedures Language

xiv

The repeat symbol above a list of keywords (one of which appears on the main path)
indicates that any one or more of the keywords may be specified; at least one must be
specified:

The repeat symbol above a list of keywords (all of which are below the main path)
indicates that any one or more of the keywords maybe specified, but they are all optional:

Convention Represents

� �
<<< , <<
variableCOMMAND

� �

<<<<<<<<<<<<<<<<
COMMAND KEYWORD1

KEYWORD2

� �COMMAND
KEYWORD1
KEYWORD2

<<<<<<<<<<<<<<<<

1

1 1Introduction

The Procedure Language facility allows you to execute a sequence of instructions by
storing them in executive routines. An executive routine is executed by entering its name.

These are the components of executive routines:

• Any Manager Products command normally enterable by the user (including calls to
executive routines)

• Directives, which provide programming capabilities

• Function calls

• Labels

• Comments

All components of the procedures language may be entered as upper or lower case
characters except for Manager Products commands, which must be entered in upper case.

Case is significant in strings. For example, these two strings:

abc
ABC

are not equal.

The procedures language is free format, except for continuation lines, so you can indent
instructions to make code more readable.

The systems administrator may set up executive routines (called corporate executive
routines) which may then be executed by any user.

Users are able to set up their own executive routines (called user executive routines and
transient executive routines).

 ASG-Manager Products Procedures Language

2

Executive routines can take their parameters from:

• The Command Area

• A line on the screen (called a line command)

• The cursor position on the screen (called a cursor spatial command).

The systems administrator can rename any Manager Products command for use by
general users so as to conform to local installation standards.

In executive routines PERFORM commands can be nested to any depth.

If your machine does not use the UK character set a few of your characters may be
different from those printed in this manual. For example, the operator giving remainder
after integer division (hex code 5A) is entered as square close bracket in the Belgian
character set but entered as exclamation mark in the UK character set. It is printed as
exclamation mark in this manual.

User-defined Commands
The User Defined Commands facility allows you:

• To use the procedures language

• To include primary commands in executive routines

• To use the following primary commands:

— QUERY CORPORATE-EXECUTIVE-INDEX

— SET and QUERY EXECUTIVE-RETENTION

With the Extended Interactive facility you may also:

• Set up transient executive routines

• Use the following commands:

— MP-AID EXEC-LIST

— SET and QUERY LINEAR-RETENTION

— QUERY LINE-COMMANDS

— SET and QUERY AUTOSKIP

— SET and QUERY USER-DIRECTORY-SEARCH

— QUERY USER-MEMBER-INDEX

The above commands are documented in the ASG-ControlManager User’s Guide.

1 Introduction

3

The User Defined Commands facility allows the systems administrator to use the
following commands:

• SET PRIMARY-COMMAND

• SET CORPORATE-EXECUTIVE-INDEX

With the Extended Interactive facility, the systems administrator may also use the
following commands:

• SET LINE-COMMAND

• SET USER-MEMBER-INDEX.

The above commands are documented in the ASG-Manager Products Systems
Administrator’s Guide.

These commands:

• DACCESS

• DEXPAND

• DRELEASE

• DRETRIEVE

• SENDF

• CLOSEF

• BUILD

• FORMAT

• TRANSFER

• TRANSLATE

are only available with the Translation and Transfer Engine facility.

If you have the Translation and Transfer Engine facility, but not the User Defined
Commands facility then, apart from the above list of commands, you can only execute the
following commands within executive routines:

• ADD

• REPLACE

• RESERVE

• RELINQUISH

 ASG-Manager Products Procedures Language

4

5

2 2Basic Concepts

This chapter includes these sections:

Setting Up Executive Routines. 6

Using Executive Routines . 6
From the Command Area . 6
Line Command . 6
Cursor Spatial Command . 7

Components Of Executive Routines . 7

Directives . 8

Labels . 8

Comments . 9

Variables . 10

Execution Control . 10

Functions . 12
User-defined Functions . 13
COBOL Argument Block . 13
PL/I Argument Block . 14
Assembler Argument Block . 15
General Notes on Argument Blocks . 15

Outputting Information . 16

Manipulating Buffers . 17

Debugging . 17

Parsing . 18

Efficiency And Readability. 20

 ASG-Manager Products Procedures Language

6

Setting Up Executive Routines
Executive routines may be stored as EXECUTIVE members on the MP-AID by the
system administrator. The contents of these members may subsequently be executed as
corporate executive routines by general users.

Users can set up their own executive routines by storing them in USER-MEMBERs and
TRANSIENTs and subsequently executing them as user executive routines or transient
executive routines respectively.

Using Executive Routines
Executive routines can be used:

• From the Command Area

• As a line command

• As a cursor spatial command

From the Command Area
Enter the name of the executive routine in the Command Area followed by the values of
any parameters.

For example, to execute an executive routine called SUBSTITUTE and to supply the
values DISPLAY and 12 as the first and second parameters respectively, enter:

SUBSTITUTE DISPLAY 12

Line Command
Enter the name of the executive routine in the Line Command Area. The values of any
parameters are derived from the contents of the associated data line so that the value of
parameter &P0 is taken from the leftmost element of the line, the value of parameter &P1
is taken from the next element to the right, and so on.

2 Basic Concepts

7

Cursor Spatial Command
A parameter is supplied to the executive routine by reading a data element from the
screen. There are two ways of making a data element available in an executive routine in
system variable &CURS:

Method 1

• Assign a PF key to the name of the executive routine

• Place the cursor at the data element on the screen to be supplied as a parameter to
the executive routine

• Press the PF key which has been assigned to the name of the executive routine.

Method 2

• Insert the name of the executive routine on the Command Line without pressing
ENTER

• Move the cursor to the data element on the screen to be supplied as a parameter to
the executive routine.

Components Of Executive Routines
Executive routines consist of the following components:

• Labels: these are reference points within an executive routine which may be
branched to using the GOTO or SIGNAL directives.

• Comments: these are textual information intended to document the logic and/or
usage of the executive routine.

• Instructions: these specify an action that Manager Products is to perform. They
comprise all components of an executive routine except for labels and comments.
Instructions may be any of the following:

— Directives: these are instructions which either control the instruction sequence
within an executive routine, or perform operations on data which is either
internal to the executive routine or supplied by the user in the form of
parameters. For example, IF is a directive.

— Primary commands are commands which may operate on data which is either
supplied by the user or is external to that generated by the executive routine.
Primary commands may be issued outside executive routines in the Command
Line or within executive routines. For example, LIST is a primary command.

 ASG-Manager Products Procedures Language

8

— Executive commands are the same as primary commands in that they may
operate on external data or parameters supplied by the user. However, they may
not be executed outside executive routines as they are only applicable within
the context of executive routines. For example, SENDF is an executive
command.

— Executive routines may be called from within executive routines.

Directives
A directive is an instruction which either controls the instruction sequence within an
executive routine, or performs operations on data which is either internal to the executive
routine or supplied by the user in the form of parameters. For example, IF is a directive.

The following general points apply to directives:

• Directives may be in upper case, lower case or a mixture of the two

• Directives cannot be abbreviated.

• The procedures language is free format, so you are free to indent blocks of code in
order to improve legibility. (This does not apply to continuation lines, see below.)

• Directives may be continued on one or more continuation lines by using the
continuation character, a hyphen preceded by a space (' —'), as the last character on
each line to be continued. The following line (the continuation line) is taken to start
in column 1. The space and hyphen are replaced by the continuation line before the
directive is executed.

Both space and hyphen are replaced by the continuation line. So if a line to be continued
ends at the end of a word, the continuation line should start with a space.

Labels
A label is declared within an executive routine as follows:

-label

Labels consist of up to 50 alphanumeric characters and must be preceded by a hyphen.
The hyphen is omitted in references to the label.

Excluding the initial hyphen, label identifiers must commence with a letter or a number.
They must not contain imbedded blanks, but all other characters, including those
normally regarded as literal and string delimiters, are permitted. Lower case and upper
case alphabetic characters are treated as identical.

2 Basic Concepts

9

Before the executive routine is executed it is scanned for label declarations and label
references to ensure that there are no label references that are undeclared or declared
more than once.

There is no limit upon the number of labels that can be used in any one executive routine.

Unlike directives, label lines may not be continued on one or more following lines.

Labels are referenced from the CALL, GOTO and SIGNAL directives.

Comments
To make the whole of a line a comment, enter the two characters '/*' at the beginning of
the line. For example:

/* The whole of this line is a comment.

To make the remainder of a line a comment, enter the characters ' /*' at the point where
you want the comment to start. For example:

SET OUTPUT-EDIT ON ; /* This is a comment.

To use '/*' or ' /*' as literals enclose them in literal delimiters.

The following additional methods of commenting are retained merely for upwards
compatibility. ASG recommends that you do not use them.

If the first non-blank character on a line is an asterisk (*), and this character is followed
by a space, the remainder of that line is taken to be a comment. For example:

* This is a comment

Any text after the logical end of a directive or command is ignored and is effectively a
comment. For example:

SET &LO ABC This is a comment.
MPR LIST ITEMS ; This is a comment too.

 ASG-Manager Products Procedures Language

10

Variables
A variable is a location to which a name is assigned and in which data can be stored
within an executive routine. The value assigned to a variable may change during the
execution of an executive routine. The value of a variable is a single text string of up to
255 characters which may contain any characters.

Variables are assigned values using the = operator. In the following example the value
123 is assigned to the variable i.

i = 123

There are several types of variables available with the procedures language. They can be
divided into variables with user-defined variable names and variables with ASG-defined
variable names.

Execution Control
Here is an example of a simple executive routine that takes three parameters and opens a
repository.

MPXX LITERAL#
DICTIONARY &P0 ;
AUTHORITY &P1 ;
STATUS &P2 ;
SAY #Repository #&PO# now open for user #&P1# in status #&P2

The instructions are executed sequentially.

Instructions are executed sequentially unless you change the execution order using one of
these directives:

• DO

• LEAVE

• ITERATE

• IF

• SIGNAL

• GOTO

• CALL

• RETURN.

2 Basic Concepts

11

DO is a loop construct. For example:

DO WHILE condition
 instruction_1
 instruction_2
...
instruction_n
END

The block is executed repeatedly while condition is true, that is, until condition
becomes false. You can jump out of the block before condition becomes false using
the LEAVE directive. You can skip an execution of the block using the ITERATE
directive.

You can execute a block conditionally using:

IF condition THEN DO
 instruction_1
 instruction_2
...
instruction_n
END

The block is only executed if condition evaluates to true.

You can construct your own loop constructs using the IF and GOTO directives. For
example:

-LABELl /* repeat until
IF condition THEN GOTO LABEL2
instruction _1
instruction _2
...
instruction _n
GOTO LABEL1
-LABEL2

The block is executed repeatedly while condition is not true. You can call other
executive routines. For example:

MPR MYEXEC
instruction

Control passes to the executive routine MYEXEC. When MYEXEC terminates, control
passes back to the calling executive routine at the instruction instruction.

 ASG-Manager Products Procedures Language

12

Functions
The procedures language provides a wide range of built-in functions. These include
character manipulation, conversion and information functions. The user may also define
external functions in another programming language (such as BAL, COBOL, and PLI).

All function calls, whether built-in or external, must be in the following format:

where argument is an expression which, having been evaluated, is passed as a parameter
to the function.

(The exceptions to this are the old versions of the TYPE, LENGTH and substring
functions.)

There may be any number of arguments from 0 upwards, where each argument should be
separated by a comma, except for trailing arguments with null values.

If a value for an argument is not given but values for one or more following arguments
are given then the null value must be represented by a comma, for example, when the
second of these arguments is a null value, the function should be written:

function-name(A, ,C)

Where there are no arguments, the function must be written:

function-name()

Each function must return a single answer in less than 256 bytes back to the executive
routine.

All arguments are subject to the rules of Full Evaluation.

A blank argument must be enclosed in quotes, for example:

FUNCT(A, ' ',B)

is valid but the following:

FUNCT(A, ,B)

is invalid.

function-name (

 argument

��

��)
<<< , <<<

2 Basic Concepts

13

Ambiguity arises if you declare a variable or function with the same name as a built-in
function. To resolve this ambiguity the following order of precedence is used:

• User-defined function

• Built-in function

• Variable

It is good programming practice to avoid such ambiguities.

To force any apparent function name to be treated as a variable, place the variable in
string delimiters. For example:

LOCAL TYPE /*define a variable called TYPE
X = TYPE(1) /* interpreted as built-in function
X + 'TYPE(1) /* interpreted as variable

User-defined Functions
A user-defined function is a function written by users in a language other than the
procedures language. The languages available are any language capable of handling the
argument table passed by the executive routine.

All function names must conform to the same naming rules as those applied to
user-defined variable names, except that function names must not exceed 8 characters in
length.

Before each user-defined function can be executed the name of that function must be
specified by adding an entry in the source module MPLUF. For further details see your
Manager Products installation manual. If a user-defined function has not been specified
within MPLUF then it will not be recognized by the software as a function and instead an
attempt will be made to interpret it as a user-defined variable.

COBOL Argument Block
The following specification is supplied in member EFABCOB in dataset MP.SOURCE.

Figure 1 • COBOL Argument Block

0l EFAB.
02 EFABANLN.

04 EFABNAME PlC X(8).
04 EFABWORK OCCURS 18 TIMES

PlC S9(9) COMP SYNC.
04 EFABRETC PlC X.
88 EFABRCO VALUE "0".
88 EFABRC1 VALUE "1".
88 EFABRC2 VALUE "2".
04 EFABANSL PlC S9(9) COMP SYNC.
04 EFABANST PlC X.

 ASG-Manager Products Procedures Language

14

88 EFABVTAN VALUE "C".
88 EFABVTNM VALUE "N".
88 EFABVTNL VALUE "U".
04 EFABANSV PlC X(255).
04 EFABANSB PlC S9(9) COMP SYNC.
04 EFABARGN PlC S9(9) COMP SYNC.

O2 EFABAFLN OCCURS 0 TO 122 TIMES
DEPENDING ON EFABARGN.

04 EFABARGL PlC S9(9) COMP SYNC.
04 EFABARGT PlC X.
88 EFABATAN VALUE "C".
88 EFABATNM VALUE "N".
88 EFABATAO VALUE "0".
88 EFABATNL VALUE "U".
04 EFABARGV PIC X(255).
04 EFABARG8 PlC S9(9) COMP SYNC.

PL/I Argument Block
The following specification is supplied in member EFABPLI in dataset MP.SOURCE.

Figure 2 • PL/I Argument Block

DCL
1 EFAB BASED (EFAB_PTR).

3 EFABANLN.
5 EFABNAME CHAR (8) ALIGNED,
5 EFABWORK (18) FIXED BIN (31) ALIGNED,
5 EFABRETC CHAR (1),
5 FILLER00001 CHAR (3),
5 EFABANSL FIXED BIN (31) ALIGNED,
5 EFABANST CHAR (1),
5 EFABANSV CHAR (255),
5 EFABANSB FIXED BIN (31) ALIGNED,
5 EFABARGN FIXED BIN (31) ALIGNED,

3 EFABAFLN (EFABAFLN_REFER REFER (EFABARGN)) ALIGNED,
5 EFABARGL FIXED BIN (31),
5 EFABARGT CHAR (1),
5 EFABARGV CHAR (255),
5 EFABARGB FIXED BIN (31);

When the package of functions is linked, PL/I functions must not be included. All PL/I
functions should be left as unresolved external references.

2 Basic Concepts

15

Assembler Argument Block
The following specification is supplied in member EFABBAL in dataset MP.SOURCE.

Figure 3 • Assembler Argument Block

*
* PROCEDURES LANGUAGE EXTERNAL FUNCTION ARGUMENT BLOCK
*
EFABNAME DS CL8 FUNCTION NAME
EFABWORK DS 18F WORK AREA
* RESPONSE FIELDS
EFABRETC DS X RETURN CODE
EFABRCO EQU C'0' NORMAL COMPLETION
EFABRC1 EQU C'1' ERROR + MESSAGE SUPPLIED
EFABRC2 EQU C'2' ERROR + STANDARD MESSAGE
EFABANSL OS F OPTIONAL ANSWER LENGTH
EFABANST DS X MANDATORY ANSWER TYPE
EFABVTAN EQU C'C' TYPE IS ALPHANUMERIC
EFABVTNM EQU C'N' TYPE IS NUMERIC
EFABVTNL EQU C'U' TYPE IS NULL
EFABANSV DS CL255 EITHER/ ANSWER VALUE (CHARACTER)
EFABANSB DS F OR ANSWER VALUE BINARY
EFABARGN DS F NUMBER OF ARGS
EFABANLN EQU *.EFABNAME LENGTH OF MANDATORY FIELDS
* ARGUMENT FIELDS
* THE FOLLOWING BLOCK WILL BE REPEATED. 1 PER ARG
EFABARGE EQU *
EFABARGL DS F ARG LENGTH
EFABARGT DS X ARG TYPE
* ARG TYPE EQUATES ARE AS FOR EFABANST ABOVE. PLUS
EFABVTAO EQU C'O' ARG WAS ADMITTED
EFABARGV DS CL255 ARG VALUE (CHARACTER)
EFABARGB DS F ARG VALUE (BINARY)
EFABAFLN EQU *.EFABARGE LENGTH OF 1 SET OF ARG FIELDS

General Notes on Argument Blocks
On return from the user-defined function, EFABRETC is examined.

If EFABRETC contains 2 (or in fact anything else except 0 or 1), the executive routine
terminates, outputting a standard function failure message.

If EFABRETC contains 1, the same things happen, except that the standard function
failure message is replaced by an error message expected to have been passed in
EFABANSV. This message may be up to 50 characters in length. The length may be
explicit (in EFABANSL) or implicit.

 ASG-Manager Products Procedures Language

16

If EFABRETC contains 0, the user-defined function coding is expected to have returned
a value in the EFABANSx fields. These fields are processed according to the following
rules.

• If EFABANST contains 'U', all other answer fields are ignored:

• If EFABANST contains 'N', then

— If EFABANSV contains nulls, the value in EFABANSB is used (a null value
is taken as zero)

— If EFABANSV does not contain nulls, then

— If EFABANSB contains nulls, the value in EFABANSV is used

— If EFABANSB does not contain nulls, the value in EFABANSB is used

• If EFABANST contains 'C', then

— If EFABANSV contains nulls, processing proceeds as if EFABANST had
contained 'U'

— If EFABANSV does not contain nulls, the value in EFABANSV is used

After it has been decided to use EFABANSV according to the rules above, the length
field EFABANSL is examined. If it contains nulls or a value in excess of 255, the length
of the data in EFABANSV is determined by the position of the rightmost non-null byte. If
EFABANSL contains a value between 1 and 255, that value is taken to be the length of
the data in EFABANSV.

Outputting Information
The WRITEL and SAY directives are used to output textual information from an
executive routine. This information is always output to the Primary Output Device.

The SET TRACE command and the TRACE and VLIST directives are used to output
debugging information. TRACE and VLIST output is either to the Primary Output
Device or to the Secondary Output Device if one is specified.

By default, SET TRACE output is directed to a ddname of MPTRACE. This default may
be changed and output can be directed to the terminal in on-line use. Refer to Chapter 10,
"Debugging," on page 193 for further details of the SET TRACE command.

The WRITEF directive is the same as the SAY directive except that it outputs
information to a specified USER-MEMBER, if one has been declared with the SENDF
command. The CLOSEF command can be used to reset or change the target user
member.

2 Basic Concepts

17

Manipulating Buffers
Executive routines can be set up to manipulate output from commands in two ways:

• The output from the command can already be displayed on the screen in the current
buffer. If you then execute an executive routine, it can automatically read the
contents of this current buffer using the &CURL system variable.

• You may wish the executive routine itself to issue the command. In this case if
OUTPUT-EDIT is set to ON then the output from the command can be referenced
as before using the &CURL variable.

You may choose to suppress output to the screen until the executive routine has
terminated. This is achieved by the SET EXEC-WRITE OFF command. This allows the
executive routine to replace the original output by a reformatted version of the output
without the original version being displayed on the screen.

Your executive routine may also be used to generate UPDATE or EDIT buffers within
executive routines. As you are explicitly generating a new buffer it is neither necessary
nor possible to generate an UPDATE buffer or an EDIT buffer with SET OUTPUT-EDIT
ON.

Debugging
There are several directives and commands that are useful in developing and debugging
executive routines.

You can use the:

• VLIST directive to display the contents of variables

• TRACE directive to display selected information as an executive routine executes

• SET TRACE command to display trace information without embedding TRACE
directives in selected procedures

• SET ECHO ON command to display each command before it is executed

• SIGNAL ON ERROR directive to trap error conditions generated by commands

• SIGNAL ON SYNTAX command to trap error conditions generated by directives

Output from the TRACE and VLIST directives goes to the Secondary Output Device (if
there is one). By default, output from the SET TRACE command goes to a ddname of
MPTRACE; you can select an alternative ddname.

 ASG-Manager Products Procedures Language

18

Parsing
Parsing is the process by which a string is divided into its component parts, its words.
Parsing is used in:

• The assignment of parameter variables

• The PARSE directive

• The WORD family of functions

The string delimiters and undelimited spaces in a string define the words in that string. A
delimited space is counted as part of a word, it does not define words. String delimiters
must be paired; the first in the pair is the left delimiter and the second is the right
delimiter.

String delimiter characters are set in your Manager Products environment. They consist
of the following:

• ' (single quote)

• " (double quote)

• Any other characters set as string delimiter characters by your administrator

To see your current string delimiter characters, enter:

QUERY STRING-DELIMITER ;

There are four parsing methods: 1 to 4. Method 4 is the default, and will be all many users
ever need. To switch parsing methods use the PARSEOPTION directive. To test if a
string can be parsed under the current parsing method use the PARSABLE function.

String delimiter characters are not processed as string delimiters in all parsing methods.
The parsing methods are described below.

Method 1
String delimiter characters are processed as string delimiters. String delimiters delimit
spaces and define words.

Method 2
String delimiter characters are processed as string delimiters. String delimiters delimit
spaces but do not define words.

Method 3
String delimiter characters are processed as ordinary characters.

2 Basic Concepts

19

Method 4
String delimiter characters are only processed as string delimiters selectively. A string
delimiter character

• As first character in the string, or

• Preceded by a space

is processed as a left delimiter, and there must be a corresponding right delimiter. String
delimiters delimit spaces and define words. Other occurrences of string delimiter
characters are processed as ordinary characters.

Example
Consider the string:

11111' '22 333

Under method 1 the string consists of four words:

11111
' '
22
333

Under method 2 the string consists of two words:

11111' '22
333

Under method 3 the string consists of three words:

11111'
'22
333

Under method 4 the string cannot be parsed since it contains a left delimiter, but no right
delimiter.

 ASG-Manager Products Procedures Language

20

Efficiency And Readability
If you make your executive routines efficient, more of the machine’s resources will be
free for you and other users. If you make your executive routines readable, they will be
easier to maintain. Here are a few tips for writing efficient and readable executive
routines:

• Use meaningful variable names, not ampersand variables

• Erase array variables or groups of variables if you finish with them part way
through the executive routine, using the DROP or RELEASE directives or
DRELEASE command

• Define a literal delimiter using MPXX LITERAL=

• Prefix commands by the MPR or MPRE directive

• Enclose literals in literal delimiters

• Use /* to define comments

• Use the DO, ITERATE, LEAVE, IF, CALL, and RETURN directives, not the
GOTO directive

• Indent instructions so that it is easy to see where instruction blocks begin and end

• Use the concatenation operator ||, and not implicit concatenation

• Consider retaining frequently called executive routines in virtual storage, using the
SET EXECUTIVE-RETENTION command and RETAIN directive

• Preserve your environment, if necessary, using the PUSH and PULL commands

21

3 3Setting Up And Using Executive
Routines

This chapter contains these sections:

Introduction . 21

Corporate Executive Routines . 22

Setting Up EXECUTIVE-ROUTINE Members. 23

User And Transient Executive Routines . 24

Executing Executive Routines From The Command Area 24

Line Commands . 24

Line Commands Example . 25

Cursor Spatial Commands . 26

Cursor Spatial Commands Example. 27

Using Prefix Commands/Resolving Name Conflicts 27

Introduction
There are three types of executive routine:

• Corporate

• User

• Transient

Corporate executive routines are maintained by the systems administrator, but can be
executed by general users.

Users can set up their own executive routines by storing them in USER-MEMBERs and
TRANSIENTs and subsequently executing them as user executive routines and transient
executive routines respectively.

 ASG-Manager Products Procedures Language

22

To list executive routines use the following commands:

• MP-AID LIST EXECUTIVES;

• MP-AID LIST USER-MEMBER;

• MP-AID LIST TRANSIENT;

To print executive routines use the following commands:

• MP-AID PRINT EXECUTIVE member-name;

• MP-AID PRINT USER-MEMBER member-name;

• MP-AID PRINT TRANSIENT member-name;

Executive routines can be used in three different modes of operation:

• From the command line

• As line commands

• As cursor spatial commands.

There will be name conflicts if, for example, you wish to execute an executive routine
having the same name as a Manager Products command. Such name conflicts can be
resolved using the prefix commands described in "Using Prefix Commands/Resolving
Name Conflicts" on page 27.

Corporate Executive Routines
Executive routines are stored as EXECUTIVE members on the MP-AID by the systems
administrator. The contents of these members may subsequently be executed as corporate
executive routines by general users, subject to any access controls.

EXECUTIVE members are initially defined as EXECUTIVE-ROUTINE members on the
Administration Dictionary by the systems administrator. EXECUTIVE-MEMBERS can
then be constructed on to the MP-AID as EXECUTIVE members.

When a user executes a corporate executive routine only the following commands can be
executed:

• All commands normally available to the user

• Any non-restricted commands that have been disabled

• Any restricted SET commands.

No other restricted commands can be executed.

3 Setting Up And Using Executive Routines

23

With the Systems Administrator’s Environmental Control Facility, the following
additional features are provided:

• Access to a corporate executive routine may be restricted by the systems
administrator to users having the appropriate access level

• Access levels are defined in a Logon Profile and are matched against the access
level defined for a corporate executive routine.

Setting Up EXECUTIVE-ROUTINE Members
 The syntax of EXECUTIVE-ROUTINE repository members is as follows:

The EXECUTIVE-LEVEL clause is optional, and can only be used if the systems
administrator’s Environmental Control Facility is installed. If the clause is used, it must
contain a value from 0 through 255.

The EXECUTIVE-LEVEL permits the systems administrator to restrict access to those
users whose Logon Profile allows access to this executive level.

The MP-AID-NAME clause is optional. If present, it must not exceed 10 alphanumeric
characters and may be optionally delimited.

Repository member names can be up to 32 characters long. However, MP-AID member
names cannot exceed 10 alphanumeric characters. The optional MP-AID-NAME clause
enables you to specify a member name under which the corporate executive routine can
be constructed onto the MP-AID, when the repository member name is unsuitable. An
EXECUTIVE-ROUTINE member with a name longer than 10 characters cannot be
constructed onto the MP-AID, unless it contains a valid MP-AID-NAME clause.

� �EXECUTIVE-ROUTINE
EXECUTIVE-LEVEL n

� �

MP-AID-NAME name common clauses

� �

�

CONTENTS instructions
<<<<<<<<<<<<

 ASG-Manager Products Procedures Language

24

User And Transient Executive Routines
With the Extended Interactive Facility you can create USER-MEMBER and
TRANSIENT members. You can execute USER-MEMBER members as user executive
routines, and TRANSIENT members as transient executive routines.

If you wish to execute a USER-MEMBER as a user executive routine it is essential for
the MPXX directive to be inserted in column 1 on the first line. This is not necessary for
executing a TRANSIENT member as a transient executive routine.

User executive routines and transient executive routines can contain any valid Procedures
Language statements.

Unlike Corporate executive routines, neither Manager Products commands that have been
disallowed by the systems administrator nor restricted SET commands can be included in
user executive routines or transient executive routines.

User executive routines and transient executive routines can only be executed by the user
who created them, or another user having the same Logon Identifier.

When a user or transient executive routine is executed and then modified during the same
executive routine run, the modifications will not be acted upon until after the current
highest level executive routine has terminated.

You can only execute transient executive routines using the prefix command
TRANSIENT-EXECUTIVE (see "Using Prefix Commands/Resolving Name Conflicts"
on page 27).2510

Executing Executive Routines From The Command Area
Enter the name of the executive routine in the Command Area followed by the values of
any parameters. For example, if you wish to execute an executive routine called
SUBSTITUTE with parameter values DISPLAY and 12, then enter:

SUBSTITUTE DISPLAY 12

Line Commands
Enter the name of the executive routine in the Line Command Area as a Line Command.
The values of any parameters are taken from the associated data line. That is, the value of
parameter &PO is taken from the leftmost element of the line, the value of parameter
&P1 is taken from the next element to the right, and so on.

3 Setting Up And Using Executive Routines

25

Unless within a delimited string, the end of an element is assumed when a space character
is encountered. As a result, multiple elements which represent a certain parameter may
need to be displayed as a delimited string. If delimiters are not present, when required,
then incorrect results may occur.

Once a Line Command has been entered in the Line Command Area, it is only necessary
to enter an asterisk (*) on any following lines in order to repeat the command.

The name of an executive routine used as a Line Command must not exceed 5 characters
and must not include any '?' characters.

Line Commands Example
Assuming you want to PRINT and REPORT particular members whose names appear on
the screen in output resulting from a previously issued LIST command. You can set up an
executive routine (called, for example, LC1) so that it can be entered as a Line Command.

LC1 should contain the following instructions:

MPXX
/* THIS IS AN EXAMPLE OF A LINE COMMAND ;
PRINT &PO ;
REPORT &PO ;

To use LC1 as a Line Command, enter LC1 in the Line Command Area on the same line
as the name of the member to be printed and reported. Press Enter to invoke the
command, the value of the parameter &PO is set to the contents of the first element in the
associated data line, which in this case is a member name.

Note:
After entering LC1 in the Line Command Area on one line, enter an asterisk (*) in the
Line Command Area of any following lines if a print and report is required of more than
one member.

Figure 4 shows LC1 being used on three members which are included in output from a
previous LIST command:

Figure 4 • LC1 Executive Routine

LIST OF MEMBERS
MEMBER NAME TYPE USAGE CONDITION AC ALT REM
HEAD-LINE-1 GROUP 0 SCE ENC 0 0 0 LC1==
HEAD-LINE-2 GROUP 0 SCE ENC 0 0 0 ====
EMP- IDENT GROUP 0 SCE ENC 0 0 0 *===
REC-EMP-ABS GROUP 0 SCE-ENC 0 0 0 ====
SYS-EMP-REC SYSTEM 0 SCE-ENC 0 0 0 *===
SYS-EMP-HIST SYSTEM 0 SCE-ENC 0 0 0 ====

 ASG-Manager Products Procedures Language

26

LIST CONTAINS 4 GROUPS
2 SYSTEMS
6 MEMBERS IN TOTAL

===>

In Figure 4 on page 25, the members HEAD-LINE-1, EMP-IDENT and SYS-EMP-REC
are printed and reported.

Cursor Spatial Commands
A Cursor Spatial Command is an executive routine that takes a parameter from an
element of text or a delimited string at the cursor position on the screen. The element or
string can be referenced within the executive routine by using the system variable
&CURS.

There are two ways in which you can make an element or string available to an executive
routine in &CURS:

Method 1

• Assign a PF key to the name of an executive routine so that it will be invoked
whenever that PF key is pressed. For example entering SET PF11 PROCL-ONE
; causes the executive routine PROCL-ONE to be executed whenever PF11 is
pressed

• Place the cursor at the element or string on the screen to be supplied as a parameter
to the executive routine.

• Press the PF key which is assigned to the name of the executive routine to execute
that executive routine.

Method 2

• Insert the name of the executive routine onto the Command Line without pressing
Enter.

• Move the cursor to the element or string on the screen which is to be supplied as a
parameter to the executive routine.

• Press Enter.

The start and/or end of an element of text is defined by a comma or space. &CURS
returns the individual element under which the cursor is placed, if the element is not part
of a larger delimited element. Leading or trailing commas are not returned. If the cursor is
placed under a comma, then the comma and immediately following characters are
returned.

3 Setting Up And Using Executive Routines

27

If the cursor is placed within a delimited string, then &CURS returns the whole string
except for the delimiters, for example:

'EMP CODE' gives EMP CODE

If the cursor is placed under either of the delimiters, then &CURS returns the whole
string including the delimiters, for example:

'EMP CODE' gives 'EMP CODE'

Cursor Spatial Commands Example
Set up the following commands in an executive routine named CS1:

MPXX
/* This is an example of a Cursor Spatial Command
PRINT &CURS ;
REPORT &CURS ;

Set up PF key 15 using the following command:

SET PF15 IMMEDIATE CS1 ;

CS1 can then be used to obtain a PRINT and REPORT of any member-name which is
displayed. Place the cursor under any character of the required member name and press
the PF15 key.

Using Prefix Commands/Resolving Name Conflicts
This is the search sequence for the commands: 2510

• Primary Commands

• User executive routines

• Corporate executive routines

So, for example, if you have an executive routine with the same name as a Primary
Command, you will not be able to execute it unless you use one of the prefix commands
described in the following table.

To execute a transient executive you must always use the TRANSIENT-EXECUTIVE
prefix command.

 ASG-Manager Products Procedures Language

28

In order to modify the search sequence or select a specific executive type, use these prefix
commands:

They have these short forms:

CEXEC
EXEC
TEXEC

The syntax is as follows:

Note:
It is not possible to use these prefix commands if:

• An executive routine is entered as a Line Command

• The name of an executive routine is preceded by the TRANSFER directive.

In such cases all you can do to resolve the name conflict is to rename one of the executive
routines.

Prefix Command Search Sequence

CORPORATE-EXECUTIVE Corporate Executive only

EXECUTE User executive then Corporate Executive

TRANSIENT-EXECUTIVE Transient executive only

� �� CORPORATE-EXECUTIVE mpaid-exec-name
EXECUTE
TRANSIENT-EXECUTIVE

� �

parameters

�;
.

29

4 4Variables

This chapter includes these sections:

Variables and Parameters . 30

User-defined Variables . 31

Arrays. 31

ASG-defined Variables . 33
System-assigned Variables . 33
User-assigned Variables . 33

Command Variables . 33

Profile Variables . 34

Global Variables . 34

Local Variables . 35

Installation Variables . 36

Parameter Variables . 36

System Variables . 37
&BUFN. 37
&CCOD. 37
&CCOL . 37
&COLO. 38
&CROW . 38
&CURL . 38
&CURS . 38
&DATE . 38
&DICT . 38
&ECOD. 39
&ENAM . 39
&ENVO. 39
&ENVM . 39
&ENVT . 40
&LINC . 40
&LINO . 40
&LOGO. 40
&MODE . 41

 ASG-Manager Products Procedures Language

30

&MSLN. 41
&MSLV. 41
&MSNO . 41
&MSTX. 41
&PNUM . 41
&PVAL . 42
&SCOD. 42
&STAT . 42
&TIME . 42
&TRMC . 42
&TRMR . 42
&USER . 42

Return Codes . 42

Variables and Parameters
Variables are assigned a value using an instruction of this format:

variable-name = expression

For example:

ORDER_DATE = ISSUE_DATE+42

There are two basic types of variables available with the procedures language:

• User-defined variables (that is, variables with user-defined names such as
COUNTER)

• ASG-defined variables (that is, variables with ASG-defined names such as &L7).

In many circumstances you have the choice of using either type of variable. ASG
recommends that you use user-defined variables where possible, as it will help to
improve the intelligibility of your executive routines.

All variables may contain text strings of 0 to 255 characters. Variables set to an integer in
the range -2147483648 to 2147483647 inclusive are eligible for arithmetical operations.

4 Variables

31

User-defined Variables
User-defined variable names can be up to 50 characters long. This allows you to give
variables meaningful names.

Command and Profile variables are only available as user-defined variables. Command
variables retain their value until the termination of the currently-running highest-level
executive routine. Profile variables retain their value at LOGOFF under specified
conditions (see "Profile Variables" on page 34).

If you use a variable without declaring it, it is declared as local. Local variables can be
explicitly declared using the LOCAL directive.

The GLOBAL, COMMAND and PROFILE directives declare a variable to be a global,
command or profile variable respectively.

User-defined variables may be removed using the DROP or RELEASE directives.

A variable may be declared as local even if it is already declared as a command or global
variable, in which case the local variable takes precedence until it is removed.

The name of a user-defined variable must conform to these rules:

• Names must be 1 to 50 characters in length

• Names can consist of the following characters: letters, digits, @ (at), # (hash), £
(pound) or _ (underscore)

• Names must begin with a letter.

ASG recommends that you do not use names that are identical to directive keywords such
as EQ, OR and THEN, as this may cause the executive routine to fail to execute as
desired.

Arrays
An array is a variable with more than one element. An array element is referenced by
following the array name by an expression in brackets. Elements are numbered from 1 to
999,999,999.

Array subscripts are evaluated according to the rules of Full Evaluation.

You can assign values to array elements using an instruction of the following format:

variable-name(expr) = value

 ASG-Manager Products Procedures Language

32

where expr is or evaluates to an integer in the range 0 to 999,999,999.

The list following shows the ways of referring to array elements:

There must be no spaces between the array name and the opening bracket. When a
particular array element is not specified the first is assumed, for example:

USERVAR(6) = X

sets the 6th element of USERVAR to the value of the first element of X.

Element zero of an array has a special purpose: its value is returned whenever a null
element of the array is referred to in an expression.

Element zero of an array can only be assigned to. In all other circumstances it is not
considered an array element. For example, its value cannot be directly retrieved.

You can set one array equal to another. For example:

TARGET() = SOURCE

sets every element of the array TARGET to the corresponding element of the array
SOURCE.

In instructions of this form the right hand side must be the name of an array, not an
expression that evaluates to the name of an array.

USERVAR The first element in the array USERVAR

USERVAR(1) The first element in the array USERVAR

USERVAR(6) The 6th element in the array USERVAR

USERVAR(expr) The nth element in the array USERVAR, expression expr evaluates
to the integer value n

USERVAR(3)(2,1) The substring (start position 2, length 1) of the third element of
USERVAR

USERVAR(2,1)(3) Interpreted as USERVAR(1)(2,1)||(3).

4 Variables

33

ASG-defined Variables
There are two types of ASG-defined variables:

• System-assigned

• User-assigned.

System-assigned Variables
System-assigned variables are maintained by Manager Products. Your executive routines
can only read them, not assign values to them. They provide information on the Manager
Products and system environment.

User-assigned Variables
User-assigned variables can be assigned by the user. They can be subdivided into the
following types:

• Global variables

• Local variables

• Installation variables

• Parameters.

The ampersand character (&) indicates an ASG-defined variable and consequently the
procedures language expects to read G, I, L, P or one of the system variable names
following the ampersand. If you wish to use & as a literal you must use either:

• &&

• Literal delimiters. For example, if the hash mark (#) has been defined as a literal
character, you would write #&#.

Command Variables
There are no predefined command variables. You define all command variable names.

Command variables exist from their declaration until the end of the highest-level
executive routine.

You use command variables when you wish to share information between executive
routines, but you do not want the information to continue to exist after the executive
routines have finished.

 ASG-Manager Products Procedures Language

34

Profile Variables
There are no predefined profile variables. You define all profile variable names.

User defined profile variables are identical to global variables except that they are not lost
at logoff but retained in a Variable Pool member on the MP-AID and automatically
restored at the next logon provided that:

• The MP-AID is updateable

• The user is logged on under an exclusive logon or is the systems administrator.

Any user may define profile variables, but they will only be saved between Manager
Products sessions under the circumstances noted above.

Global Variables
&G0 to &G99 are the predefined global variables.

Global variables are available to any executive routine called during a Manager Products
session. Their values are maintained from one executive routine to the next and may be
reassigned by any executive routine. Global variables are set to null when the session
starts.

Here is an example of the use of global variables. This example sets up two executive
routines, START and FINISH.

The START executive routine contains the following commands:

MPXX
&G0 = &DATE
&G1 = &TIME

The FINISH executive routine contains the following commands:

MPXX LITERAL=#
MPR SWITCH OUTPUT TO MPRT;
MPR SET ECHO ON;
MPR KEEP AND LIST IF AMENDED AFTER "&G0" AT "&G1" BY &USER;
MPR PERFORM 'PRINT "*"' KEPT;
MPR SET ECHO OFF;
MPR SWITCH OUTPUT TO MPOUT;
SAY #SESSION RECORD WAS OUTPUT VIA MPRT#

4 Variables

35

If the START executive routine is invoked when a user logs on (for example, as part of
the Logon Profile), the value of global variable &G0 will be set to the current date, and
the value of global variable &G1 will be set to the time that START executed. These
values will be maintained for the duration of the session, provided that these global
variables are not reassigned elsewhere.

If the user, immediately before logging off from Manager Products, invokes the executive
routine FINISH, a LIST and PRINT of all members amended during the current session
will be written out to an external file, as a session record. The values of global variables
&G0 and &G1, which have been maintained whilst the user is logged on, will provide the
selection criteria for the FINISH executive routine.

Local Variables
&L0 to &L99 are the predefined local variables.

Local variables are available for the exclusive use of an individual executive routine.
They are initially set to null on entry to the executive routine.

Here is an example of the use of local variables. This example sets up executive routine
ARC-PRINT. ARC-PRINT contains the following commands:

MPXX
&L2 = &STAT
MPR STATUS ARCHIVE;
MPR PRINT &P0;
MPR STATUS &L2;

In the above executive routine, the current status is assigned to local variable &L2. After
the PRINT command has been performed, local variable &L2 is then used to switch the
user back to the current status.

ARC-PRINT may be used to print a member from the ARCHIVE status, without having
to manually enter STATUS or PRINT commands.

The following command could be used to obtain a print of a member called
1992-TAX-CODES, which is stored in the ARCHIVE status:

ARC-PRINT 1992-TAX-CODES;

 ASG-Manager Products Procedures Language

36

Installation Variables
&I0 to &I99 are the only installation variables.

These can only be assigned by the systems administrator in an executive routine called
from GLOBAL0000, and may not be altered by any user. The assigned values may be
read within any executive routine.

A use for installation variables might be to provide access to standard terms used within
an organization when setting up transient executive routines and user executive routines.

Parameter Variables
Each executive routine has 100 parameter variables: &P0 to &P99.

When an executive routine is invoked, the input line is parsed and the words are assigned
to parameter variables, starting from &P0. Within the executive routine parameter
variables can be used exactly as if they are local variables.

Here is an example of the use of parameter variables. If you enter the command:

MYEXEC DAVE 10;

the executive routine MYEXEC is invoked with &P0 initialized to DAVE and &P1 to 10.
All other parameter variables are initialized to null.

Parameter values are delimited by spaces. So if a parameter value has a space in it, you
must enclose the value in string delimiters. For example:

MYEXEC ’DAVID S’ 10;

These string delimiters are stripped out when the parameter variables are set.

An executive routine call in an executive routine is subject to Limited Evaluation.

So in the following example:

A = 'A'
B = ''
C = 'C'
EXEC1 A B C ;

the expressions A B C evaluate to 'A C'. So the command:

EXEC1 A C;

4 Variables

37

is executed. There are two parameters. To prevent this, enclose potentially null
parameters in string delimiters. For example:

EXEC1 A 'B' C;

There are now three parameters.

System Variables
The system variables available with the procedures language are described below in
alphabetical order. System variables are ASG-defined and system-assigned.

&BUFN
Buffer name, if any, of the currently addressed buffer. There are five different types of
buffer. You can find out the current buffer type from the system variable &MODE.

The currently addressed buffer is determined by use of the SET OUTPUT-EDIT ON/OFF
command.

&CCOD
Return code from the previous command or executive routine.

&CCOL
Offset from the start of a data line to the character under which the cursor is placed. The
value of &CCOL is set to 0 for the first character, 1 for the second character and so on. If
the cursor is outside the current buffer; that is, in the:

• Line Command Area,

• Command Area, or

• Heading Area

Buffer Type &BUFN

Command Mode Null

InfoBank Mode Name of the InfoBank panel being viewed

Lookaside Mode Null

Edit Mode Name of the USER-MEMBER being edited (if any), otherwise null

Update Mode Name of the repository member being updated (if any), otherwise
null

 ASG-Manager Products Procedures Language

38

then &CCOL is set to -1.

&CCOL is generally used in conjunction with the system variable &CROW to determine
the cursor position.

&COLO
Offset of the first visible column of text at the left margin in the current buffer. If the
buffer has not been offset due to a previous RIGHT command then the offset given is 0.
Otherwise the value given is the number of columns of text before the left margin which
are not displayed due to this offset. The currently addressed buffer is determined by use
of the SET OUTPUT-EDIT ON/OFF command.

&CROW
Number of data lines from the *** TOP OF DATA *** line to the data line where the
cursor is placed. The value of &CROW is set to 1 for the first data line, 2 for the second
data line and so on. If the cursor is outside the current buffer; that is, in the:

• Line Command Area,

• Command Area, or

• Heading Area

then &CROW is set to -1.

&CROW is generally used in conjunction with the system variable &CCOL to determine
the cursor position.

&CURL
Contents of current line in the currently addressed buffer. The currently addressed buffer
is determined by use of the SET OUTPUT-EDIT ON/OFF command.

&CURS
Value of an element of text or a delimited character string at the cursor position.

&DATE
Current date (in the format defined in the DCUST installation macro).

&DICT
Name of repository currently open (if any).

4 Variables

39

&ECOD
Highest return code from executive routines or commands executed in the current
executive routine.

&ENAM
Name of current executive routine.

&ENVO
Operating System in use. &ENVO is one of these values:

&ENVM
Environment in use. &ENVM is one of these values:

D DOS

M ManagerView 2510

O OS

P Programmable Work Station (PWS) 2510

S BS2000

V VM/CMS

W Web client 2510

A Access call

F Full-screen interactive

L Line-mode interactive

M ManagerView 2510

P Programmable Work Station (PWS) 2510

S Standard environment (batch)

W Web client

 ASG-Manager Products Procedures Language

40

&ENVT
TP Monitor in use. &ENVT is one of these values:

In MVS TSO/ISPF environments, the value I is returned only when Manager Products
requires ISPF to be present (that is, when using selectable unit FE70). When ISPF is not
required (selectable unit TP7), the value T is returned.

&LINC
Total number of lines in the currently addressed buffer. The currently addressed buffer is
determined by use of the SET OUTPUT-EDIT ON/OFF command.

&LINO
Number of data lines from the *** TOP OF DATA *** line to the current line in the
currently addressed buffer. The value of &LINO is set to 1 for the first data line, 2 for the
second data line and so on. The currently addressed buffer is determined by use of the
SET OUTPUT-EDIT ON/OFF command.

&LOGO
Logon Identifier.

A Access Call Interactive (when any other setting is not appropriate)

B Batch

C CICS

D IMS/DC

F ICCF

I TSO/ISPF

M ManagerView 2510

K Background TSO invoked via IKJEFT01 2510

P Programmable Work Station (PWS) 2510

R ROSCOE

S Siemens Timesharing Interface (TIAM)

T TSO

V VM/CMS

W Web client

4 Variables

41

&MODE
Buffer mode of currently addressed buffer. &MODE is set to one of these values:

The currently addressed buffer is determined by use of the SET OUTPUT-EDIT ON/OFF
command.

&MSLN
Complete message line of the last Manager Products message.

&MSLV
Severity level of the last Manager Products message. &MSLV is set to one of the
following values:

&MSNO
Number of the last Manager Products message (leading zeroes are not present).

&MSTX
Text of the last Manager Products message.

&PNUM
Number of input parameters supplied to the current executive routine, that is, the number
of &P variables that were assigned values when the executive routine was called.

C Command Mode

E Edit Mode

I InfoBank Mode

L Lookaside Mode

U Update Mode.

C Critical error message.

E Error message

I Informatory message

S Serious error message

W Warning message

 ASG-Manager Products Procedures Language

42

&PVAL
Content of all parameters supplied to the current executive routine, exactly as entered by
the user.

&SCOD
Highest return code so far of the current Manager Products session.

&STAT
Name of the current status (if any).

&TIME
Current time (in the format defined in the DCUST installation macro).

&TRMC
Number of columns on the terminal screen. This is a physical characteristic of the type of
terminal in use.

&TRMR
Number of rows on the terminal screen. This is a physical characteristic of the type of
terminal in use.

&USER
Name of the current repository user (if any).

Return Codes
Return codes are set after each Manager Products command or executive routine
depending on the maximum severity level of all messages issued during execution of that
command or executive routine as follows:

• Result code 0 is issued for Informatory (I level) messages

• Result code 4 is issued for Warning (W level) messages

• Result code 8 is issued for Error (E level), Serious (S level), or Critical (C level)
messages

4 Variables

43

The following system variables provide information regarding return codes:

If an executive routine does not return using the EXIT directive then:

EXIT &ECOD

is assumed.

&CCOD, &ECOD and &SCOD can be reset using the EXIT directive.

&CCOD Return code from the previous executive routine or command

&ECOD Highest return code from executive routines or commands executed in the
current executive routine

&SCOD Highest return code so far of the current Manager Products session.

 ASG-Manager Products Procedures Language

44

45

5 5Expressions

This chapter includes these sections:

Introduction . 45

Full Evaluation . 47

Limited Evaluation . 48

Character Expressions . 49

Numeric Expressions . 49

Introduction
Expressions represent those parts of instructions that may be evaluated. Any expression
consists of one or more terms optionally interspersed with one or more operators.

A term is the smallest element of the procedures language that represents a distinct and
separate value. It can be used alone or in combination with other terms to form an
expression. These are examples of terms:

&L17
ABC
100
POS('t','state')

An operator is one of these symbols:

| | Concatenation

+ Addition

- Subtraction

* Multiplication

 ASG-Manager Products Procedures Language

46

The concatenation operator concatenates two terms.

For example:

literal #
&L1 = #NAME#
&L3 = &L1| |8

results in &L3 being set to the string NAME8.

Note:
The concatenation operator is only mandatory in situations where ambiguity may arise if
it is omitted. For example:

SAY &L2| |23

However, ASG recommends that it be used between all terms that are to be concatenated.

Expressions are terminated by an undelimited space character.

There are two types of expression:

• Character

• Numeric

Expressions are evaluated strictly left to right, regardless of the type of operator. All
expressions are assumed to be numeric expressions, until a non-numeric term is
encountered. For example, the expression 2+3||FRED results in the character
expression 5FRED. No expression may exceed 255 characters in length after evaluation,
except for expressions following the WRITEF directive, where the limit is 32760
characters.

There are two types of evaluation:

• Limited Evaluation

• Full Evaluation

Which type of evaluation takes place depends on the context.

/ Integer division giving quotient

! Integer division giving remainder

** Raise to a power

5 Expressions

47

Full Evaluation
Full Evaluation takes place with all directives that are evaluated (apart from three that are
subject to Limited Evaluation), and in:

• Assignment instructions

• Array subscripts

• Function calls.

These actions are performed with Full Evaluation:

• All characters are processed left-to-right, for example:

SAY 5+9ACCOUNT gives 14ACCOUNT

• Concatenation symbols are removed

SAY ABCDE||12345 gives ABCDE12345

• Literal delimiters (as defined by LITERAL) are removed, character strings within
literal delimiters are then returned unchanged. For example:

LITERAL #
&GO = 45
SAY #&GO BOOK# gives &GO BOOK

• String delimiters are removed, character strings within string delimiters then being
processed under the rules of Limited Evaluation, for example:

&GO = 45
SAY '&GO BOOK' gives 45 BOOK

• Array subscripts and function arguments are evaluated

• All variables are replaced with their values

• Function calls are evaluated

• Arithmetic expressions are evaluated.

 ASG-Manager Products Procedures Language

48

Limited Evaluation
Limited Evaluation takes place with the following directives:

• WRITEL

• MPR

• TRANSFER

and with expressions in any instruction that is not recognized by the procedures language,
the instruction then being processed as a command, for example:

X Y;

where X and Y are user-defined variables.

Expressions subject to Limited Evaluation may not exceed 4000 characters in length after
substitution, except for expressions following the WRITEL directive, where the limit is
598 characters.

These actions are performed with Limited Evaluation:

• Concatenation is performed, for example:

WRITEL NUMBER||42 gives NUMBER42

• Any variable is replaced with its value, for example:

i = 1
WRITEL i gives 1
a(1) = 1
WRITEL a(1+1-1) gives 1
WRITEL i+a(1) gives 1+1

• Literal delimiters (as defined by LITERAL) are removed. The character strings
within literal delimiters are not evaluated. For example:

LITERAL #
SAY #&GO IS CORRECT # gives &GO IS CORRECT

• For implicit substring arguments, nested implicit substrings are evaluated.

5 Expressions

49

Character Expressions
A character expression is defined as:

where:

|| is the concatenation operator

term is any of the following:

— Variable name

— Function call

— Undelimited character string with no embedded blanks

— Delimited character string

Examples

ABC||&PO
&P1&P2&P3
LEFT(field,4,*)
'4+2||FRED'

Numeric Expressions
A numeric expression is defined as:

where:

prefix is + (plus) or - (minus)

operator is any of the following:

+ Addition

- Subtraction

* Multiplication

� �

termterm
||

<<<<<<<<<<<<<<<<<<

�

� �

operator termprefix
<<<<<<<<<<<<<<<

�term

 ASG-Manager Products Procedures Language

50

term is any of these:

— Variable name

— Integer

— Function

All operators have equal precedence and are processed from left to right. For example:

4+6**2 gives 100

Expressions must be in the range -2147483648 to 2147483647 inclusive, except for the
second operand of ** which must be in the range 0 to 15 inclusive.

Note:
Null strings are not considered numeric terms.

Examples

&L2+LENGTH(range)

total-volume

1500*878

/ Integer division giving quotient

! Integer division giving remainder

** Raise to a power

51

6 6Example Executive Routines

This chapter contains these example executive routines:

MP-AID Copy (PROCL-01). 51

Condensed MP-AID List (PROCL-02) . 52

FASTQUIT (PROCL-03) . 54

Quick Sign On (PROCL-04) . 54

Decimal Conversion (PROCL-05) . 55

All Occurrences (PROCL-06) . 56

Overlay (PROCL-07) . 57

PF Key Settings (PROCL-08) . 58

Compound Interest (PROCL-09) . 59

ISPF Read, Write and Edit . 60

ISPF Variables. 61

Some of the titles of the executive routines are followed by a repository member name in
brackets. This gives the name of the member in the demo repository that contains the text
of the executive routine.

MP-AID Copy (PROCL-01)
MPXX
/* This executive routine copies a user member to another user member.
/* The routine has three parameters: member-name1 TO member-name2.

IF &P1 ¬= 'TO' THEN GOTO OUT /* check the syntax.
MPR NOPRINT EDIT;
IF &CC0D ¬= 0 THEN GOTO OUT1 /* Reject if not possible
 /* to open an EDIT buffer.
MPR NOPRINT GETU &P0;
IF&CCOD ¬= 0 THEN GOTO OUT2 /* Did it work?
MPR NOPRINT FILE &P2;
/* Reject if destination member cannot be setup either
/* because there is not enough space available on the MP-AID
/* for another USER-MEMBER, or because a USER-MEMBER having
/* this name already exists on the MP-AID.

 ASG-Manager Products Procedures Language

52

IF &CCOD ¬= 0 THEN GOTO OUT3
WRITEL 'USER-MEMBER '&P0' HAS BEEN SUCCESSFULLY COPIED TO '&P2
EXIT

-OUT
WRITEL 'You have not entered the correct syntax.'
WRITEL 'You should have entered:'
WRITEL 'EXEC_NAME member-name1 TO member-name2'
EXIT

-OUT1
WRITEL 'Your limit of output buffers has been reached and'
WRITEL 'it is not possible to execute the command.'
EXIT

-OUT2
MPR NOPRINT XQUIT;
WRITEL 'The USER-MEMBER that you wish to copy does'
WRITEL 'not exist for your logon identifier.'
EXIT

-OUT3
MPR NOPRINT XQUIT;
IF &MSNO = 8814 THEN DO
 WRITEL 'COPY WAS UNSUCCESSFUL'
 WRITEL 'You already have a USER-MEMBER called '&P2
EXIT

-OUT3
MPR NOPRINT XQUIT;
IF &MSNO = 8814 THEN DO
 WRITEL 'COPY WAS UNSUCCESSFUL'
 WRITEL 'You already have a USER-MEMBER called '&P2
 EXIT
END
WRITEL 'It was not possible to store a copy of your'
WRITEL 'USER-MEMBER on the MP-AID due to lack of space.'
EXIT

Condensed MP-AID List (PROCL-02)
MPXX
/* This executive routine produces a condensed version of the output from
/* an MP-AID LIST member-type command. It expects one parameter: the name
/* of an MP-AID member-type.

IF arg() ¬= THEN DO
 SAY 'You must give one parameter: MP-AID member-type'
 EXIT
END

MPR NOPRINT PUSH;
MPR NOPRINT SET OUTPUT-EDIT ON;
MPR NOPRINT SET EXEC-WRITE OFF;
MPR MP-AID LIST &P0;
even = ' '
odd = ' '
line_count = &LINC
/* lines_read is the line number of the output generated by the MP-AID LIST
/* command.
lines_read = 4 /* Allow for heading and trailing blanks.

6 Example Executive Routines

53

member_number = 0
SAY '+'COPIES('-',67)'+'
MPR NEXT; /* Get the first line of output.
&L4 = SUBSTR(&CURL,1,60)
blanks = ' '
/* Re-output the first line centralized followed by header
SAY |blanks||&L4|
SAY '+'COPIES('-',67)'+'
header = 'NAME TYPE DATE '
SAY | header | header |
SAY '+'COPIES('-',67)'+'
MPR NEXT;

-LOOP /* Start of loop
MPR NEXT;
/* Check whether all output lines of output from the MP-AID LIST command
/* have been read.
IF lines_read GT line_count THEN GOTO CLEAR

/* Two lines of information, the first 32 characters from each line, are
/* read from the list of members at a time. Even numbered lines are stored
/* in even. Odd numbered lines are stored in odd. Once an even numbered line
/* has been read it is concatenated onto the end of an odd numbered line and
/* re-output. odd and even are then reset to null ready for storing the
/* next pair of lines.
/*
IF even ¬= ' ' THEN DO /* Output concatenated pair of lines
 SAY | odd | even |
 odd = ' '
 even = ' '
END
IF odd ¬= ' ' THEN GOT EVEN
odd = SUBSTR(&CURL,1,32) /* Read new odd numbered line
member_number = member_number+1
GOTO TEST

-EVEN
even = SUBSTR(&CURL,1,32) /* Read new even numbered line
member_number = member_number+1

-TEST
lines_read = lines_read+1
GOTO LOOP /* Put out final lines and do the totals.

-CLEAR
blanks = ' '
IF odd EQ ' ' THEN GOTO TOTAL
IF even EQ ' ' THEN even = LEFT(blanks,32)
/* Output an odd numbered line followed by blanks for the last line if there
/* were an odd number of members listed.
SAY | odd | even |

-TOTAL
padding = COPIES(' ',28)
SAY '+'COPIES("-",67)'+'
member_number = SUBSTR(member_number,1,4)
SAY | TOTAL MEMBERS LISTED WAS member_number padding |
SAY '+'COPIES("-",67)'+'
MPR TOP;
MPR DELETE line_count; /* Remove the original output lines.
MPR NOPRINT SET OUTPUT-EDIT OFF
MPR NOPRINT SET EXEC-WRITE ON;
MPR NOPRINT PULL;

 ASG-Manager Products Procedures Language

54

FASTQUIT (PROCL-03)
MPXX
/* FASTQUIT executive routine
/* This executive routine allows you to immediately XQUIT from any number
/* of buffers and outputs the buffer types exited. If you are initially in
/* Command Mode then there is no need to XQUIT. This routine takes no
/* parameters.

If &MODE EQ C THEN EXIT
loop = 0 /* Loop counter

-LOOP
loop = loop+1
MPR XQUIT; /* XQUIT from this mode.
IF &MODE ¬= C THEN GOTO LOOP /* Loop until in Command Mode.
MPR CLEAR;
LITERAL #
SAY #***> You just quit from #loop# buffers.#
EXIT 0

Quick Sign On (PROCL-04)
MPXX
/* This executive routine opens a repository. Its parameters are
/* repository-name, authority and (optionally) status-name.
LITERAL #
IF &P0 EQ "" THEN DO
 SAY #NO REPOSITORY NAME SPECIFIED#
 EXIT
END
IF &P1 EQ "" THEN DO
 SAY #NO USER NAME SPECIFIED#
 EXIT
END
MPR NOPRINT SWITCH OFF MESSAGE LEVEL 1;
MPR DICTIONARY &P0 UDATE;
MPR AUTHORITY &P1;
IF &P2 ¬= ' ' THEN DO
 MPR STATUS &P2;
END
MPR NOPRINT SWITCH ON MESSAGE LEVEL 1
SAY #REPOSITORY# &DICT #OPEN FOR# &USER #IN STATUS# &STAT
EXIT

6 Example Executive Routines

55

Decimal Conversion (PROCL-05)
MPXX
/* DECIMAL CONVERSION EXECUTIVE ROUTINE
/* This executive routine calculates the decimal for of a fraction n / m
/* passed as three input parameters.
/* (n * m must be less than 1,000,000,000)
/*
LITERAL #
/* Check that the parameters are numbers separated by '/'
IF TYPE(&P0) = #n# AND &P1 = #/# -
 AND TYPE(&P2) = #N# -
 AND &P3 = '' -
 THEN GOTO VALID
SAY #Input is not in the form 'number / number'#
EXIT

-VALID
/* Check that n * m are less than 1,000,000,000
len_dividend = length(&P0)
len_divisor = length(&P2)
IF len_dividend+len_divisor > 9 THEN DO
 SAY #integers too large#
 EXIT 4
END
val(1) = 9-len_dividend
val(4) = val(1)+1 /* Save multiplying power
integer_nums = 1

-loop
integer_nums = 10*integer_nums
val(1) = val(1)-1
IF val(1) > 0 THEN GOTO loop
/* integer_nums is now 10 to power val(1)-1

/* Multiply numerator by integer_nums
val(2) = integer_nums*&P0
val(3) = val(2)/&P2 /* Divide by denominator
/* Divide by integer_nums to get integer part
quotient = val(3)/integer_nums
/* Subtract integer_nums to get decimal part
decimal = integer_nums*quotient+val(3)
decimal = .||decimal /* Add decimal point

-loop2
decimal_size = length(decimal) /* Final length of decimal part
IF decimal_size < val(4) THEN DO
 /* Add leading zeros until correct number
 decimal = .0||substr(decimal,2,)
 GOTO loop2
END
/* Concatenate integer and decimal parts
result = quotient||decimal

-loop3
answer_size \ LENGTH(result)
last_digit \ answer_size-1
IF substr(result,last_digit,1) EQ "-" THEN GOTO FINE
IF substr(result,answer_size,1) ¬= 0 THEN GOTO FINE
result = substr(result,1,last_digit)
GOTO loop3

-FINE
SAY '&P0# / #&P2 = result'
EXIT 0

 ASG-Manager Products Procedures Language

56

All Occurrences (PROCL-06)
MPXX
/* This executive routine scans through the current buffer from top to
/* bottom and displays in a lookaside buffer lines containing a specified
/* string together with the line number.
/* Parameter &P0 is the string to be searched for. Parameter strings are
/* upper-cased so this routine cannot be used to find a string containing
/* lowercase characters.
MPR NOPRINT SET; /* Ensure that &MSNO is reset
count = 0
if &p0 eq '' then do
 say No argument given
 exit
end
offset = &lino /* Get current line number
MPR TOP; /* Search from top of buffer
-test
MPR NOPRINT LOCATE &p0 /* Attempt to locate string
if &msno eq 8823 then goto finish /* String not found
count = count+1
say &lino &curl
goto test
-finish
MPR TOP;
MPR NEXT offset;
if count eq 0 then say 'nothing found'
exit 0

6 Example Executive Routines

57

Overlay (PROCL-07)
MPXX
/* This executive routine overlays lines in the current edit/update buffer.
/* The parameters are: string position number-of-occurrences. If
/* number-of-occurrences = '*' then overlaying is done on every line in
/* the buffer. position and number-of-occurrences both default to 1.
literal #
string = &p0
position = &p1
count = &p2
offset = &lino
if position eq '' then position = 1
if count eq '' then count = 1
if type(position) ¬= N then goto error
if type(count) ¬= N and count ¬= '*' then goto error
if &curl eq '*** TOP OF DATA***' then NEXT;
/* Allow for 'do to end'
if count eq '*' then count = &linc+1-&lino
loop_counter = 0 /* Loop control
 newline = overlay(string,&curl,position)
 NOPRINT CHANGE \&curl ||newline||\ 1 1;
 loop_counter = loop_counter+1

-loop
if loop_counter ne count then do
 NEXT;
 newline = overlay(string,&curl,position)
 NOPRINT CHANGE \&curl ||newline||\1 1;
 loop_counter = loop_counter+1
goto loop
end
TOP;
if offset eq 0 then exit
 NEXT offset;
exit

-error

say 'The parameters are string position number-of-occurrences' exit

 ASG-Manager Products Procedures Language

58

PF Key Settings (PROCL-08)
MPXX
/* This executive routine displays your PFkey settings. It takes no
/* parameters.
MPR NOPRINT PUSH;
LITERAL #
/* Allow the output from QUERY PF to be accessed by this executive routine
MPR NOPRINT SET OUTPUT-EDIT ON;
MPR NOPRINT SET EXEC-WRITE OFF;
MPR NOPRINT SET BLANK-LINE-DISPLAY ON;
MPR QUERY PF;
out_lines = &LINC /* Save number of lines of output
MPR DOWN 1; /* Check whether PF keys defined
IF SUBSTR(&CURL,1,2) EQ NO THEN GOTO ENDIT
MPR UP 1;
line_number = 0
-START
MPR DOWN 1;
PF_number = SUBSTR(&CURL,3,2) /* Get PF key number

-UNDEFINED_KEY_LOOP
line_number = line_number+1
IF line_number GT 24 THEN GOTO DISPLAY /* Check for last line
IF PF_number GT line_number THEN DO /* Check for undefined key
 PF(line_number) = #PF#line_number# ** UNDEFINED #
 IF line_number LT 10 THEN DO /* Insert zero if value < 10.
 PF(line_number) = INSERT(0,PF(line_number),2,1)
 END
 GOTO UNDERFINED_KEY_LOOP
END
PF(PF_number) = SUBSTR(&CURL,1,33) /* Save PF key number and definition
IF &LINC EQ &LINO THEN DO /* Check for undefined PF keys at
 PF_number = 25 /* end of output
 GOTO UNDEFINED_KEY_LOOP
END
GOTO START

-DISPLAY
/* Generated header information
SAY
SAY #CURRENT CMR PF KEY SETTINGS - USER# &USER# :#
SAY # #COPIES(#=#,45)
&L51 = #*#
&L52 = COPIES (#=#,70)
&l53 = &L51&L52&L51
SAY &L53
PF_num = 0
-LINELOOP
PF_num = PF_NUM+1
&L31 = #: #
&L34 = PF(PF_num)||&L31||SUBSTR(PF(PF_NUM+12),1,32)
&L35 = INSERT(|,&L34,,3)
SAY LEFT(&L35,72,|) /* Output text in a box.
IF PF_num LT 12 THEN GOTO LINELOOP /* Test for last line.
SAY &L53
SAY
MPR TOP;
MPR DELETE out_lines; /* Delete original QUERY PF output.

-ENDIT
MPR NOPRINT SET BLANK-LINE-DISPLAY OFF;
MPR NOPRINT SET OUTPUT-EDIT OFF;
MPR NOPRINT SET EXEC-WRITE ON;
EXIT
MPR NOPRINT PULL;

6 Example Executive Routines

59

Compound Interest (PROCL-09)
MPXX
/* This executive routine provides the compound interest for a period of one
/* to five years from an initial sum in the range 100 to 100,000. Output is
/* given for annual interest rates of -10 percent to 20 percent.
/* There is one parameter: the amount of money.
/* Interest is paid on an annual basis.
MPR NOPRINT PUSH
MPR NOPRINT SET BLANK-LINE-DISPLAY ON;
literal #
null = '' /* Define null array
/* Store parameters in the array inital
arrayname = initial /* arrayhi must operate on an expression
parse arg initial () /* that can be substituted when evaluated
/* Validate the input parameters.
/* There should be just one integer parameter.
if arrayhi(arrayname) gt 1 then goto errex1
if arrayhi(arrayname) it 1 then goto errex2
if type(initial) ne 'N' then goto errex2
if initial > 100000 or initial < 100 then goto errex3
b = 90
/* Output header information.
say 'Inflation/interest calculation.'
say 'SUM INTEREST 1yr 2yr 3yr 4yr 5yr'

-loop
if b > 121 then goto wayout
c(1) = initial*b/100
c(2) = c(1)*b/100
c(3) = c(2)*b/100
c(4) = c(3)*b/100
c(5) = c(4)*b/100
h = right(initial,6,'')
interest = b -100
interest = right(interest,3,'')
/* Right justify compounded sums for output.
c(1) = right(c(1),6,'')
c(2) = right(c(2),6,'')
c(3) = right(c(3),6,'')
c(4) = right(c(4),6,'')
c(5) = right(c(5),6,'')
/* Output new compounded values.
say h interest c(1) c(2) c(3) c(4) c(5)
/* Specify intervals between interest rates.
If b > 114 then b = b+4
If b > 104 then b = b+1
If b < 101 then b = b+5
c() = null
say
goto loop /* Loop for next interest rate.

-wayout
exit

/* Output error messages
-errex1
say #Only one parameter please.#
exit 4

-errex2
say #You must enter the initial sum as a parameter.#
exit 4

-errex3
say #The initial sum must be an integer between 100 and 100000.#
exit 4
MPR NOPRINT PULL;

 ASG-Manager Products Procedures Language

60

ISPF Read, Write and Edit
MPXX
/* This executive routine uses the ISPF command and will therefore only
/* run in environments where ISPF services are available.
/* It allows you to edit a repository member using the ISPF editor.
/* It takes one parameter: the name of the member to be edited.
LITERAL #
LOCAL cmr_name

/* Check if member name passed
IF ARG(,#P#) = 0 THEN DO
 SAY 'NO MEMBER-NAME SPECIFIED'
 EXIT 8
END

/* Allocate browse data set
#ISPF SELECT CMD(ALLOC F(T) DA('ms.mspgb.techd.transfer') SHR)#
IF ZERRC ¬= 0 THEN EXIT 8

/* Update member -error message if update fails
SET cmr_name ARG(0,#P#)
MPR NOPRINT UPDATE cmr_name;
IF &CCOD ¬= 0 THEN DO
 SAY 'MEMBER 'cmr_name' NOT ON REPOSITORY'
 EXIT 8
END

/* Write buffer to data set
MPR WRITE T;

/* Edit data set
#ISPF EDIT DATASET('ms.mspgb.techd.transfer')#

IF ZERRRC ¬= 0 THEN MPR NOPRINT XQUIT;

/* File in repository
IF ZERRRC EQ 0 THEN DO
 MPR NOPRINT TOP;
 MPR NOPRINT DELETE 32000;
 MPR READ T;
 MPR FILE;
END

/* Free data set and return to caller
#ISPF SELECT CMD(FREE F(T))#;
EXIT ZERRC

6 Example Executive Routines

61

ISPF Variables
MPXX
/* This executive routine uses the ISPF command and so will only run in
/* environments where ISPF services are available. It reads and sets ISPF
/* variables.
LITERAL #

/* Change the ISPF command-line variable and store the change in the profile
#ISPF PUT ZPLACE BOTTOM#
#ISPF VPUT ZPLACE PROFILE#;

/* Change the ISPF scroll-amount variable and store the change in the profile
#ISPF PUT ZSCED 13#;
ISPF VPUT ZSCED PROFILE#;

/* Use the ISPF editor to show the values have been changed
#ISPF EDIT DATASET('ms.mspgb.techd.transfer')#;

/* Copy the value of the command-line variable. cmr_zplace does not already
/* exist so ISPF creates it as a command variable.
#ISPF VGET 2PLACE PROFILE#;
ISPF GET ZPLACE cmr_zplace#;

/* Copy the value of the scroll-amount variable. cmr-zsced does not alread
/* exist so ISPF creates it as a command variable.
#ISPF VGET ZSCED PROFILE#;
#ISPF GET ZSCED cmr_zsced#;

/* Display the retrieved values
SAY '+==+'
SAY '| VARIABLES RETRIEVED FROM ISPF |'
SAY '+--+
SAY '| COMMAND LINE | ZPLACE | 'LEFT(cmr_zplace,21)' |’
SAY '+--+
SAY '| SCROLL AMOUNT | ZSCED | 'LEFT(cmr_zsced,20)' |’
SAY '+==+'

 ASG-Manager Products Procedures Language

62

63

7 7Executive Commands

This chapter contains specifications, in alphabetical order, of all executive commands.

ARRAYGEN . 64
ARRAYGEN Syntax . 65

ARRAYSORT . 65
ARRAYSORT Syntax . 66

BUILD . 66
Building a KEPT-DATA List from an Array . 67
Building an Array from a KEPT-DATA List . 68
BUILD Syntax . 69

CLOSEF. 70
CLOSEF Syntax . 71

DACCESS . 72
Obtaining Security, Current Status, and History Information. 73
Obtaining Full Status Information . 76
Suppressing Information . 77
Maintaining Variables for Two or More Members. 78
Obtaining Condition Information . 80
Example. 81
DACCESS Syntax. 83

DEXPAND . 84
Expanding a Member for a Particular Language . 85
Using a Specific Form and Version of Any Processed Items 85
Generating Local Names as Variables . 86
Giving Specified Alias Names . 86
Example. 87
Maintaining Variables for Two or More Members. 89
DEXPAND Syntax . 91

DRELEASE . 91
Rules on Releasing Variables . 92
DRELEASE Syntax . 93

DRETRIEVE. 94
Retrieving Repeating Clauses . 95
Retrieving Used-By or Reference Information . 96
Example 1 . 99

 ASG-Manager Products Procedures Language

64

Example 2 . 99
Specifying Variable Names. 100
Suppressing Information . 101
Accessing DEXPANDed Information . 102
Example. 103
Retrieving Unique Key Identifiers . 103
Maintaining Variables for Two or More Members. 104
DRETRIEVE Syntax . 105

RELINQUISH . 106
RELENQUISH Syntax . 107

RESERVE . 107
RESERVE Syntax. 108

SENDF . 108
Sending Output to a USER-MEMBER. 109
Sending Output to a Sequential Dataset . 110
Sending Output to a Partitioned Dataset . 112
SENDF Syntax . 112

SREAD . 113
SREAD Syntax . 114

ARRAYGEN
The ARRAYGENT command sets up an array where each element represents a line of
output from a specified Manager Products command.

The ARRAYGEN command creates a command variable and puts into it the output from
the specified Manager Products command, each line of output being stored in a separate
element of the variable. The output includes Manager Products messages.

If the array already exists, it is erased, then re-declared.

The ARRAYGEN command rejects the following commands:

• Commands that require the Basic Interactive Facility (such as TOP, BOTTOM,
LEFT and RIGHT)

• Commands that require the Extended Interactive Facility (such as CHANGE,
UPDATE and EDIT).

The instructions:

LITERAL #
ARRAYGEN #DATA_LIST# 'MP-AID LIST USER ;' ;

7 Executive Commands

65

put output from the command:

MP-AID LIST USER;

into the array DATA_LIST. The first non-blank line is in DATA_LIST(1), the second in
DATA_LIST(2), and so on.

Normally blank lines are not included in the array. If you want blank lines included, use
the ALL keyword, for example:

ARRAYGEN #DATA_LIST# 'MP-AID LIST USER ;' ALL ;

If no output is written to the specified variable, then use of the ARRAYH1 function
returns a value of 0.

ARRAYGEN Syntax

where:

array-name is the name of an array

manager-products-command is a Manager Products command, optionally
including a terminator.

ARRAYSORT
The ARRAYSORT command sorts the contents of a command or global array.

The ARRAYSORT command sorts the contents of a source array according to a key
which you specify, and writes the sorted version to a target array. You must specify the
following:

• The source and target array names. These must conform to the naming rules for
Manager Products variables, and may be no longer than 50 characters. The names
can be the same, in which case the source array is overwritten with a sorted version.

• Whether each array is a global or command array

• The start position and length of the key you wish to use. If the key field extends
beyond the length of an element, the element is padded with spaces.

• Whether to sort in ASCENDING or DESCENDING order. The sort uses
alphanumeric values, not numeric.

� � �ARRAYGEN array-name 'manager-products-command'

� �

�;
ALL .

 ASG-Manager Products Procedures Language

66

No default values are supplied, so you must provide all the required parameters in the
syntax. All keywords may be truncated to a single character.

Return codes &CCOD are set as follows:

• If the source-array-name does not exist, &CCOD is set to 8

• If the source-array-name is empty, &CCOD is set to 4

For example:

ARRAYSORT USERVAR GLOBAL SORTVAR GLOBAL 5 25 DESCENDING ;

sorts, in descending order, the contents of global array USERVAR. The results are
written to global array SORTVAR. The key field has a start position of 5 and a length of
25.

ARRAYSORT Syntax

where:

key-start must be numeric within the range 1 to 255

key-length must be numeric within the range 1 to 255

BUILD

The BUILD executive command allows the exchange of data between a KEPT-DATA
list and an array. You can process the data in whatever form, KEPT-DATA list or array,
that is most suitable and then convert back to the original form.

You can:

• Generate a KEPT-DATA list from an array of member key values

• Generate an array of member key values from a KEPT-DATA list

� � �ARRAYSORT source-array-name COMMAND
GLOBAL

� �target-array-name COMMAND
GLOBAL

� �key-start key-length ASCENDING
DESCENDING

� � �;
.

7 Executive Commands

67

Building a KEPT-DATA List from an Array
Use the BUILD KEPT-DATA command to generate a KEPT-DATA list from an array of
member key values.

To generate a named KEPT-DATA list from an array of member key values, enter:

BUILD KEPT-DATA IN kept FROM ARRAY #array# KEYS;

where:

kept is the name of a KEPT-DATA list

array is the name of an array

is a literal delimiter.

To generate a unnamed KEPT-DATA list from an array of member key values, enter:

BUILD KEPT-DATA FROM ARRAY #array# KEYS ;

where array is the name of an array.

If you specify the ALSO keyword, the BUILD KEPT-DATA command appends
members to the specified KEPT-DATA list.

The command generates the KEPT-DATA list from a local array if one exists, otherwise
from a command or global array.

The arrays that can be generated from the DRETRIEVE command are shown in the table
below. For example, the array ALIAS_KEY is generated by the DRETRIEVE ALL
ALIAS-KEYS command.

DRETRIEVE ALL Keyword Generated Array Name

ALIAS-KEYS ALIAS_KEY

ATTRIBUTE-KEYS ATTRIBUTE_KEY

CATALOGUE-KEYS CATALOGUE_KEY

REFERENCES REF_KEY

USED-BYS USED_KEY

 ASG-Manager Products Procedures Language

68

You can alter an array of member key values as follows:

• Set an element to zero if you don’t want a key value processed by a subsequent
BUILD KEPT command

• Set an element to null if you don’t want a key value, or any key values with higher
element numbers, processed.

Do not alter an array of member key values in any other way or you may generate corrupt
KEPT-DATA lists.

Example
This example uses the DACCESS and DRETRIEVE commands to store the references to
other members from member FIL1 in array REF_KEY. The BUILD command then
generates a KEPT-DATA list.

MPXX LITERAL=#
DACCESS MEMBER FIL1 ;
DRETRIEVE ALL REFERENCES ;
BUILD KEPT-DATA IN COLLECTION FROM ARRAY #REF_KEY# KEYS ;

Building an Array from a KEPT-DATA List
Use the BUILD ARRAY command to generate an array of member key values from a
KEPT-DATA list.

To build an array from a named KEPT-DATA list, enter:

BUILD ARRAY array KEYS FROM KEPT IN #kept#;

where:

array is the name of an array

kept is the name of a KEPT-DATA list

is a literal delimiter.

To build an array from the unnamed KEPT-DATA list, enter:

BUILD ARRAY array KEYS FROM KEPT;

where array is the name of an array.

To append member key values to an existing array of member key values use the ALSO
keyword. The key values are added to the array starting at the first null element.

7 Executive Commands

69

The rules for creating the array or appending to it are as follows:

• If ALSO is not specified, all arrays with the specified name are dropped and a local
array is created

• If ALSO is specified, a local array with the specified name is created if it does not
already exist, and member key values are appended starting at the first empty
element.

Example

To generate an array DATA_BANK from a KEPT-DATA list ASSORTMENT, enter:

BUILD ARRAY DATA_BANK KEYS FROM KEPT IN #ASSORTMENT# ;

BUILD Syntax

where build-kept-data-from-array-clause is:

list is the name of a KEPT-DATA list

array is the name of an array containing key values

build-array-from-kept-data-clause is:

list is as defined above

array is as defined above

� � �build-kept-data-from-array-clauseBUILD
build-kept-from-kept-data-clause

� �

�;
.

� �KEPT-DATA
IN list ALSO

� �FROM ARRAY array KEYS

� �ARRAY array KEYS
ALSO

� �FROM KEPT
IN list

 ASG-Manager Products Procedures Language

70

CLOSEF
The CLOSEF command closes an output destination opened in a previous SENDF
command.

To close an MP-AID USER-MEMBER, enter:

CLOSEF member-type user-name;

where:

member-type is PUBLIC-USER-MEMBER, PRIVATE-USER-MEMBER, or
USER-MEMBER. These keywords are equivalent to each other. They are included
only for commonality with the corresponding SENDF command. You therefore
cannot use CLOSEF to change a USER-MEMBER from public to private or vice
versa.

user-name is the name of the USER-MEMBER.

If a USER-MEMBER destination was specified as NEW or REPLACE in the previous
SENDF command, but has not been written to, then the member is not created (empty
USER-MEMBERs are not allowed).

To close a sequential dataset, enter:

CLOSEF SEQUENTIAL ddname;

To close an open member of a partitioned dataset, enter:

CLOSEF PARTITIONED ddname MEMBER member-name;

where:

ddname is the logical file name used in job control statements to define the external
dataset name of the file.

member-name is the name of the member to be written to the partitioned dataset. If
this member is not empty, it is stowed onto the dataset, then the dataset is closed. If
a member name is not specified, all open (non-empty) members are stowed, then
closed.

To close all open members of a partitioned dataset, enter:

CLOSEF PARTITIONED ddname;

To close the primary/secondary output device (MPOUT) as a destination, enter:

CLOSEF PRINT;

7 Executive Commands

71

To close all previously-opened destinations, enter:

CLOSEF ALL;

At the end of the current executive routine (or the highest level executive routine, for
nested executive routines), all partitioned datasets or USER-MEMBERs not explicitly
closed by a CLOSEF command are automatically closed. Sequential datasets stay open
until explicitly closed by a CLOSEF command.

To access the data sent to a destination within the same executive routine run in which the
data was output, you must first explicitly close that member.

CLOSEF Syntax

where:

user-name is the name of an MP-AID USER-MEMBER

file is the name of a sequential or partitioned dataset. It is the logical file name
(ddname or dtfname) used in job control statements to define the external dataset
name (physical file name) of the file

member is the name of a member of a partitioned dataset.

� � �USER-MEMBERCLOSEF
PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER
SEQUENTIAL file
PARTITIONED
PDS
PRINT
ALL

user-member

file
MEMBER member

� � �;
.

 ASG-Manager Products Procedures Language

72

DACCESS
The DACCESS command performs the following functions:

• It reads a specified index-name in the repository

• It performs a security check for protected members to prevent unauthorized users
from reading a member’s definition

• Subject to the security check, it brings the complete definition of an index-name
into an area of virtual storage. Updates to that index-name by other users will not
then affect the accessed data.

• It makes non-repeating clauses available for processing (variables occurring in
repeating clauses are generated only when a DRETRIEVE command is issued in
respect of a DACCESSed member) by generating command variables

• It indicates the occurrence of repeating clauses, by setting up variables which can
be used as a control mechanism in the executive routine:

• A COUNT_clause-id variable (referred to as a count variable) representing the total
number of occurrences of a repeating clause; and

• An OCC_clause-id variable (referred to as an occurrence variable) to which a
subsequent DRETRIEVE command will assign a value depending on the
occurrences of the repeating clause. Definition refers either to information that
describes the attributes of an index-name and/or to information about relationships
of members with catalog classifications, indexed attributes, alias types and names
and other members.

At the end of an executive routine any command variables generated for a index-name
which has been DACCESSed within that routine are automatically released.

Variables generated for an index-name are nullified if a subsequent DACCESS command
is run before the previous index-name is released, unless a cursor number is specified.
They will be regenerated when the second DACCESSed member is released.

If CURSOR c is specified in a DACCESS command, then the command variables
generated are suffixed with a cursor number. This will allow variables from two or more
members/index-names to be available at the same time.

To access a member, enter:

DACCESS MEMBER name;

where name is the name of a repository member.

To access a catalog classification record, enter:

DACCESS CATALOGUE classification;

7 Executive Commands

73

where classification is a catalog classification.

To access an alias record, enter:

DACCESS ALIAS alias-name;

where alias-name is the name of an alias.

To access an indexed clause, enter:

DACCESS ATTRIBUTE clause-name;

where clause-name is the name of a clause.

In the last three cases individual members which use the specified catalog classification,
alias or indexed attribute can then be found if the DRETRIEVE
USED-BYS/REFERENCES command is used.

Every index-name has a unique key address (the index-name’s key). To DACCESS an
index-name by its key, enter:

DACCESS KEY key;

where key is a key. You obtain keys by using the DRETRIEVE or BUILD commands.

Obtaining Security, Current Status, and History Information
The command:

DACCESS MEMBER member-name;

gives you basic information about the member’s definition. You can obtain additional
information using the WITH clause.

If you enter DACCESS MEMBER member-name WITH SITUATION; the following
situation variables are generated. Note that the status information generated by WITH
SITUATION relates to the currently-visible version of the member; for information about
all statuses, see the WITH STATUS-DETAILS option.

Variable Name Information Held

ACCESS_LEVEL The access security level

ACCESS_PERMIT Is access allowed? (YES or NO)

ACCESS_PROTECTED Does the member have an access level? (YES or
NO)

ALTER_LEVEL The alter security level

 ASG-Manager Products Procedures Language

74

ALTER_PERMIT Is alteration allowed? (YES or NO)

ALTER_PROTECTED Does the member have an alter level? (YES or NO)

EDITION The number of times the member has been
encoded

ENCODE_DATE The date the member was last encoded

ENCODE_STATUS The status in which the encoded record or dummy
resides

ENCODE_STATUS_CONDITION The condition of the ENCODE_STATUS status
(UPDATE or READ-ONLY)

ENCODE_TIME The time the member was last encoded

ENCODE_USER The user who last encoded the member

INSERTION_DATE The date the member was inserted

INSERTION_TIME The time the member was inserted

INSERTION_USER The user who inserted the member

LOCK Is the member locked? (YES or NO)

LOCK_EXPIRY_DATE The date the lock expires

LOCK_EXPIRY_TIME The time the lock expires

LOCKED_BY_USER The user who locked the member

OWNER_NAME The owner name

OWNER_PROTECTED Is the member owned? (YES or NO)

REF_STATUS The status in which the member’s latest reference
table resides

REF_STATUS_CONDITION The condition of the REF_STATUS status
(UPDATE or READ-ONLY)

REMOVE_LEVEL The remove security level

REMOVE_PERMIT Is removal permitted? (YES or NO)

REMOVE_PROTECTED Does the member have a removal level? (YES or
NO)

SOURCE_CONDITION The condition of the source record (ENCODED or
UNVERIFIED)

SOURCE_STATUS The status in which the encoded source record
resides

Variable Name Information Held

7 Executive Commands

75

The variables ACCESS_LEVEL, ALTER_LEVEL, and REMOVE_LEVEL are only
made available if you are the repository controller.

The variables with prefix UVS_ are only set when the variable SOURCE_CONDITION
is equal to UNVERIFIED.

If you intend to subsequently DRETRIEVE a member’s used-bys or references, enter:

DACCESS MEMBER member-name WITH USED-BYS;

Or

DACCESS MEMBER member-name WITH REFERENCES;

If you specify WITH USED-BYS/REFERENCES, a member’s used-bys and references
are read into virtual storage at the same time as its definition. They can subsequently be
generated as variables by the DRETRIEVE command.

SOURCE_STATUS_CONDITION The condition of the SOURCE_STATUS status
(UPDATE or READ-ONLY)

UPDATE_DATE The date the member was last updated

UPDATE_TIME The time the member was last updated

UPDATE_USER The user who last updated the member

USED_STATUS The status in which the member’s latest used-by
table resides

USED_STATUS_CONDITION The condition of the USED_STATUS status
(UPDATE or READ-ONLY)

UVS_INSERTION_DATE The insertion date of the unverified source record

UVS_INSERTION_TIME The insertion time of the unverified source record

UVS_INSERTION_USER The user who inserted the unverified source record

UVS_STATUS The status the unverified source record resides in

UVS_STATUS_CONDITION The condition of the UVS_STATUS status
(UPDATE or READ-ONLY)

UVS_UPDATE_DATE The date the unverified source record was last
updated

UVS_UPDATE_TIME The time the unverified source record was last
updated

UVS_UPDATE_USER The user who last updated the unverified source
record

Variable Name Information Held

 ASG-Manager Products Procedures Language

76

If you do not specify WITH USED-BYS/REFERENCES, the DACCESSed member may
be updated later by another user, causing the information generated by a subsequent
DRETRIEVE USED-BYS/ REFERENCES to be out of step when compared with the
information generated by your DACCESS command.

You can access all used-bys, references and non-syntax attributes, by entering:

DACCESS MEMBER member-name WITH SITUATION USED-BYS REFERENCES;

Obtaining Full Status Information
You can use the WITH STATUS-DETAILS clause to generate variables containing
information about every status in which the member exists. The following status
variables are generated for each status in which the member exists.

Variable Name When Generated

STATUS-MEMBER-TYPE If the member is encoded or used/references

STATUS-SOURCE-INSERTION-DATE If source present

STATUS-SOURCE-INSERTION-TIME If source present

STATUS-SOURCE-INSERTION-USER If source present

STATUS-SOURCE-UPDATE-DATE If source has been altered

STATUS-SOURCE-UPDATE-TIME If source has been altered

STATUS-SOURCE-UPDATE-USER If source has been altered

STATUS-UVS-INSERTION-DATE If altered source not same as encoded source

STATUS-UVS-INSERTION-TIME If altered source not same as encoded source

STATUS-UVS-INSERTION-USER If altered source not same as encoded source

STATUS-UVS-UPDATE-DATE If uvs source altered

STATUS-UVS-UPDATE-TIME If uvs source altered

STATUS-UVS-UPDATE-USER If uvs source altered

STATUS-ENCODE-DATE If source encoded

STATUS-ENCODE-TIME If source encoded

STATUS-ENCODE-USER If source encoded

STATUS_LOCK_EXPIRY_DATE The date the status lock expires

STATUS_LOCK_EXPIRY_TIME The time the status lock expires

STATUS_LOCK_BY_USER The user who applied the status lock

7 Executive Commands

77

Information about the status structure of the dictionary can be obtained by executing the
command member MPCMSTAT which will set up the following global variables for
each of the named statuses:

MPCM_STATUS-LEVEL
MPCM_STATUS-NAME
MPCM_STATUS-CONDITION
MPCM_STATUS-BASE

Suppressing Information
You use the SUPPRESS clause to suppress the generation of certain variables (as
described below). A DACCESS SUPPRESS command also suppresses the generation of
variables from subsequent DRETRIEVE commands.

Using the SUPPRESS clause is more efficient when you are only interested in a few
clauses. Generating variables and reading information that you do not need wastes
processing time.

To suppress all attributes and prevent the generation of count variables, enter:

DACCESS MEMBER member-name SUPPRESS ALL-ATTRIBUTES;

The following variables, relating to a member’s identity will be the only variables
generated:

• Member name and member type

• Member condition (encoded or dummy)

• Base member type.

If SUPPRESS ATTRIBUTES is specified then no variables will be generated for a
member’s attributes. The variables relating to the member’s identity are generated
together with count variables, indicating the presence of repeating clauses.

If SUPPRESS COUNTS is specified, count variables will not be generated. If required, a
subsequent DRETRIEVE COUNT command can be entered to generate the count
variable for a specified clause.

STATUS-REF-DATE If different references (that is, the type of a
referred-to member has changed)

STATUS-REF-TIME If different references (that is, the type of a
referred-to member has changed)

STATUS-REF-USER If different references (that is, the type of a
referred-to member has changed)

Variable Name When Generated

 ASG-Manager Products Procedures Language

78

If you have specified any of:

• SUPPRESS ALL-ATTRIBUTES

• SUPPRESS ATTRIBUTES

• SUPPRESS COUNT

then you can use the WITH ATTRIBUTES or WITH ALL-ATTRIBUTES clause in the
DRETRIEVE command to generate the variables associated with the keyword specified.
In the following example, all variables are suppressed in the DACCESS command, but
the variables relating to the clause specified are generated later with a DRETRIEVE
command:

DACCESS MEMBER member-name SUPPRESS ALL-ATTRIBUTES;
DRETRIEVE CURRENT EFFECTIVE-DATE WITH ATTRIBUTES;

Note:
DRETRIEVE WITH COUNTS retrieves count variables for clauses dependent on the
clause being retrieved, such as the count variable of an ELSE sub-clause within a
CONTAINS clause.

If SUPPRESS DEFINITION is specified access to the definition of the member being
DACCESSed is suppressed. Attributes cannot be generated as variables later. Only
DRETRIEVE USED-BYS/REFERENCES can be specified in a later command.

Maintaining Variables for Two or More Members
Information from several DACCESSed (or DEXPANDed) members or index-names can
be made available for processing at the same time by associating a cursor number with
each member or index-name, thereby suffixing the variable names generated for each
member or index-name with the relevant cursor number.

This can be done by entering:

DACCESS MEMBER member-name CURSOR c;

Or

DEXPAND MEMBER member-name CURSOR c;

All the variables generated are then suffixed by the cursor number, represented by c.

c is an integer in the range 1 to 32767.

7 Executive Commands

79

For example, the command:

DACCESS MEMBER EMP-ADDR CURSOR 5;

generates variables suffixed by 5 such as:

ACCESS_MEMBER_5
COUNT_DESCRIPTION_5

If a second DACCESS takes place with the same cursor number then the variables for the
first DACCESSed member with the same cursor number are temporarily nullified until
the second DACCESSed member is released. When the member with the same cursor
number is released the variables for the previously DACCESSed member are
regenerated.

The CURSOR c clause is used to keep the variables of a first and second DACCESSed
member (and others if needed) available for processing.

The DRETRIEVE and DRELEASE commands will act on the last DACCESSed member
with the same cursor number.

The command:

DRETRIEVE FIRST CONTAINS;

would retrieve the first occurrence of a CONTAINS clause for the last member
DACCESSed with no cursor number specified.

The command:

DRETRIEVE FIRST CONTAINS CURSOR 3;

would retrieve the first occurrence of a CONTAINS clause for the last member
DACCESSed with a cursor number specified as '3'.

If a DRETRIEVE or DRELEASE CURSOR c command does not correspond to a
DACCESS command with the same CURSOR c number then an error message is output.

A DRELEASE command with the CURSOR c clause releases the last member
DACCESSed with the specified cursor.

 ASG-Manager Products Procedures Language

80

Obtaining Condition Information
You use the CONDITION keyword to set variables indicating the condition of a
repository member, alias, attribute or catalogue. To reveal a member’s condition, enter:

DACCESS CONDITION MEMBER member-name;

If the specified member is present and accessible, the variable MEMBER_CONDITION
will be set to one of the following values:

If the specified member is present but not accessible, the variable
MEMBER_CONDITION will be set to one of the following values:

The DACCESS CONDITION command is only rejected if the member is not present in
the repository or if there is an error in the command syntax.

The DACCESS CONDITION command also sets the variable ACCESS_MEMBER and,
if the user has security access to the member concerned, the variables
BASE_MEMBER_TYPE, MEMBER_KEY and MEMBER_TYPE.

If WITH STATUS-DETAILS is specified, the status variables are also set. If WITH
SITUATION is specified, the situation variables are also set.

The member definition variables are not set. For the information returned in these, you
should issue a separate DACCESS MEMBER command.

You should release the DACCESSed member using the standard DRELEASE MEMBER
command after performing a DACCESS CONDITION command.

Value Member Condition

ENCODED Encoded repository member

DUMMY Dummy member

ALIAS Alias name

CATALOGUE Catalogue name

INDEXED ATTRIBUTE Indexed attribute name

Value Member Condition

NOT-VISIBLE The member is in another status

SOURCE The member is not encoded

INACCESSIBLE The user does not have security access to the member

7 Executive Commands

81

Example
Consider a member EMP-ADDR whose definition is as follows:

ITEM
REPORTED-AS PIC 'X(50)'
HELD-AS CHARACTER 50
ALIAS 'EMPLOYEE-ADDRESS'
 ,COBOL 'EMP-ADDR'
 ,ASSEMBLER 'EMPADDR'
CATALOG 'EMPLOYEE'
DESCRIPTION 'CURRENT EMPLOYEE PERMANENT HOME ADDRESS'
EFFECTIVE-DATE '29/03/84'
NOTE 'NEEDS REVIEW AFTER 6 MONTHS'
 'AUTHOR DBA'

The executive routine:

MPXX
DACCESS MEMBER EMP-ADDR;
VLIST COMMAND

produces the following output:

ACCESS_MEMBER (C) 00001 'EMP-ADDR'
BASE_MEMBER_TYPE (C) 00001 'ITEM'
COUNT_ACCESS_AUTHORITY (C) 00001 0'
COUNT_ADMINISTRATIVE_DATA (C) 00001 '0'
COUNT_ALIAS (C) 00001 '3'
COUNT_ALIAS_KEYS (C) 00001 '3'
COUNT_ATTRIBUTE_KEYS (C) 00001 '0'
COUNT_CATALOGUE (C) 00001 '1'
COUNT_CATALOGUE_KEYS (C) 00001 '1'
COUNT_COMMENT (C) 00001 '0'
COUNT_COPYRIGHT (C) 00001 '0'
COUNT_DESCRIPTION (C) 00001 '1'
COUNT_FORM_DESCRIPTION (C) 00001 '2'
COUNT_FREQUENCY (C) 00001 '0'
COUNT_NOTE (C) 00001 '2'
COUNT_QUERY (C) 00001 '0'
COUNT_REFERENCES (C) 00001 '0'
COUNT_SECURITY_CLASSIFICATION (C) 00001 '0'
COUNT_SEE (C) 00001 '0'
COUNT_UDR1 (C) 00001 '0'
COUNT_UDR2 (C) 00001 '0'
COUNT_UDR3 (C) 00001 '0'
COUNT_UDR4 (C) 00001 '0'
COUNT_UDR5 (C) 00001 '0'
COUNT_UDR6 (C) 00001 '0'
COUNT_UDR7 (C) 00001 '0'
COUNT_UDR8 (C) 00001 '0'

 ASG-Manager Products Procedures Language

82

COUNT_UDR9 (C) 00001 '0'
COUNT_SEE (C) 00001 '0'
COUNT_USED_BYS (C) 00001 '4'
EFFECTIVE_DATE (C) 00001 '1984089'
MEMBER_CONDITION (C) 00001 'ENCODED'
MEMBER_ER_INTEGRITY (C) 00001 'CHECK-OK'
MEMBER_KEY (C) 00001 '332876'
MEMBER_TYPE (C) 00001 'ITEM'
OBSOLETE_DATE (C) INDEX ENTRY ONLY
OCC_ACCESS_AUTHORITY (C) 00001 '0'
OCC_ADMINISTRATIVE_DATA (C) 00001 '0'
OCC_ALIAS (C) 00001 '0'
OCC_ALIAS_KEYS (C) 00001 '0'
OCC_ATTRIBUTE_KEYS (C) 00001 '0'
OCC_CATALOGUE (C) 00001 '0'
OCC_CATALOGUE_KEYS (C) 00001 '0'
OCC_COMMENT (C) 00001 '0'
OCC_COPYRIGHT (C) 00001 '0'
OCC_DESCRIPTION (C) 00001 '0'
OCC_FORM_DESCRIPTION (C) 00001 '0'
OCC_FREQUENCY (C) 00001 '0'
OCC_NOTE (C) 00001 '0'
OCC_QUERY (C) 00001 '0'
OCC_REFERENCES (C) 00001 '0'
OCC_SECURITY_CLASSIFICATION (C) 00001 '0'
OCC_SEE (C) 00001 '0'
OCC_UDR1 (C) 00001 '0'
OCC_UDR2 (C) 00001 '0'
OCC_UDR3 (C) 00001 '0'
OCC_UDR4 (C) 00001 '0'
OCC_UDR5 (C) 00001 '0'
OCC_UDR6 (C) 00001 '0'
OCC_UDR7 (C) 00001 '0'
OCC_UDR8 (C) 00001 '0'
OCC_UDR9 (C) 00001 '0'
OCC_USED_BYS (C) 00001 '0'

Refer to the VLIST directive for details of the format of this output.

The member EMP-ADDR has three ALIAS entries, therefore the COUNT_ALIAS
variable has a value of '3'. Repeating clauses such as ALIAS, having a count variable,
need to be RETRIEVEd in order to access the data contained in the clause. If
EMP-ADDR had no aliases then COUNT_ALIAS would be '0'.

The OCC_ variables are set up for each repeating clause. Values are assigned to these
when a subsequent DRETRIEVE command retrieves a particular occurrence of a clause.

COUNT_REFERENCES gives the number of members that EMP-ADDR refers to.
COUNT_USED_BYS gives the number of members that refer to EMP-ADDR.

7 Executive Commands

83

DACCESS Syntax

where:

member-name is the name of a repository member

classification is a catalog classification

alias-name is the name of an alias

attribute-name is the name of an indexed attribute

key-variable-name is the name of a numeric key identifying a member, alias,
catalog or indexed attribute on the Manager Products repository

c is an integer in the range 1 to 32767.

� � �DACCESS MEMBER member-name
CONDITION CATALOGUE classification

ALIAS alias-name
ATTRIBUTE attribute-name
KEY key-variable-name

� �

CURSOR c

� �

WITH
<<<<<<<<<<<<<<<
SITUATION
USED-BY
REFERENCES
STATUS-DETAILS

� �

SUPPRESS ATTRIBUTES
COUNTS
ALL-ATTRIBUTES
DEFINITION

� � �;
.

 ASG-Manager Products Procedures Language

84

DEXPAND

The DEXPAND command generates data structure(s) represented by members. The
member types that can be generated from and the rules on following reference paths are
the same as for the PRODUCE command.

By processing a specified member’s data definition and the members referred to in that
definition, DEXPAND generates records representing:

• The hierarchy, group structure and storage offsets or relative start positions of a
data structure, and

• The names and definitions of the members constituting it.

The command can be used for:

• Generating variables equivalent to the record layout of a data structure

• Processing members for export to source programming languages

• Producing data descriptions and control statements in the major data base
management system languages.

To generate a data structure, enter:

DEXPAND MEMBER member-name;

To expand a member and to specify a CURSOR number for the variables generated for
that member, enter:

DEXPAND MEMBER member-name CURSOR c;

The records created by the DEXPAND command are made available to the user by the
DRETRIEVE EXPAND-RECORD command.

The member DEXPANDed is always the first record generated by the DEXPAND
command.

Contained members will be included in the data structure output if:

• They are encoded, and

• They are not protected against access by the user.

For DUMMY members, DEXPAND generates default variables where possible.

The publication ASG-Manager Products Source Language Generation Facility discusses
record layouts and the PRODUCE command in detail.

7 Executive Commands

85

Expanding a Member for a Particular Language
To expand a member for a particular language, enter:

DEXPAND MEMBER member-name FOR language;

The FOR language clause determines how the member is expanded and performs name
checks so that all variables produced conform with the language specified. If the FOR
language clause is specified the VERIFIED-NAME variable is edited to conform to the
language specified. If exporting to that environment, you should use the
VERIFIED-NAME as input.

The languages specified can be:

• COBOL

• PL/1

• PL/1F

• BAL.

Using a Specific Form and Version of Any Processed Items
To expand a member using a specific form and version of any ITEM members processed
during the expansion, enter:

DEXPAND MEMBER member-name USE form VERSION v;

form refers to an ITEM’s ENTERED-AS, HELD-AS or REPORTED-AS entry, or to its
DEFAULTED-AS entry.

The keywords USE and USING are synonymous. If present, the clause states which form
and version of the ITEM members are to be used in the DEXPAND command.

If VERSION v is not present in the USE clause, VERSION 1 is the default.

If a form and version stated in the USE or USING clause do not exist for an ITEM
member from which generation is taking place, the lowest numbered version of a form
selected according to the following order of preference is used:

• DEFAULTED-AS

• HELD-AS

• ENTERED-AS

• REPORTED-AS.

The first form encountered in this order is taken as the default.

 ASG-Manager Products Procedures Language

86

If no USE or USING clause is present, the form and version of ITEM members used are
those defined for the containing member. If the member does not state a version the
lowest numbered version of the relevant form is assumed. If the member does not state a
form, DEFAULTED-AS is assumed.

Generating Local Names as Variables
To expand a member and generate its local names as variables, enter:

DEXPAND MEMBER member-name GIVING KNOWN-AS;

This clause will, wherever possible, generate variables based on the DEXPANDed
members’ KNOWN-AS clauses instead of on the member’s names or aliases. The
VERIFIED-NAME variable will contain the verified KNOWN-AS name.

When both the KNOWN-AS name and the ALIAS name are requested, no ALIAS
variable will be generated, if a KNOWN-AS name has been selected.

Giving Specified Alias Names
To expand a member giving specified alias names enter:

DEXPAND MEMBER member-name ALIAS alias-type alias-number;

Or

DEXPAND MEMBER member-name WITH-ALIAS alias-type alias-number;

If this clause is present in the command, then names generated are based wherever
possible on aliases taken from a member’s ALIAS clause. The VERIFIED-NAME
variable will contain the verified alias.

If the ALIAS clause specifies an alias-type, each generated alias is based if possible on
the specific alias of the specified type in the member’s ALIAS clause, unless the
KNOWN-AS name is specified.

If an alias number is specified then a general alias with the same number will be returned.

7 Executive Commands

87

Example
The DEXPAND command generates variables representing the hierarchy, group structure
and storage offsets or relative start positions of a data structure, and the names and
definitions of the members constituting it.

For example, the following executive routine:

MPXX
DEXPAND MEMBER EMP-IDENT;
DRETRIEVE ALL EXPAND-RECORD;
VLIST COMMAND

generates these variables:

ACCESS_PERMIT (C) 00001 'YES'
ACCESS_PERMIT (C) 00002 'YES'
ACCESS_PERMIT (C) 00003 'YES'
ALIAS_NAME (C) INDEX ENTRY ONLY
ALIGNMENT (C) 00001 'UNALIGNED'
ALIGNMENT (C) 00002 'UNALIGNED'
ALIGNMENT (C) 00003 'UNALIGNED'
BASE_MEMBER_TYPE (C) 00001 'GROUP'
BASE_MEMBER_TYPE (C) 00002 'ITEM'
BASE_MEMBER_TYPE (C) 00003 'ITEM'
BIT_OFFSET (C) INDEX ENTRY ONLY
COMPRESSED (C) INDEX ENTRY ONLY
COUNT_EXPAND_RECORD (C) 00001 '3'
DATA_TYPE (C) 00002 'CHARACTER'
DATA_TYPE (C) 00003 'CHARACTER'
DISTINCT_TYPE (C) INDEX ENTRY ONLY 2.5
EXPANDED_MEMBER (C) 00001 'EMP-IDENT'
FIELD_LENGTH (C) 00001 '100'
FIELD_LENGTH (C) 00002 '50'
FIELD_LENGTH (C) 00003 '50'
FORM (C) 00001 'HELD-AS'
FORM (C) 00002 'HELD-AS'
FORM (C) 00003 'HELD-AS'
FRACTION_DIGITS (C) INDEX ENTRY ONLY
INDEXED (C) INDEX ENTRY ONLY
INTEGER_BOUND (C) INDEX ENTRY ONLY
JUSTIFICATION (C) INDEX ENTRY ONLY
KNOWN_AS_NAME (C) INDEX ENTRY ONLY
LENGTH_UNIT (C) INDEX ENTRY ONLY 2.5
LEVEL_NUMBER (C) 00001 '1'
LEVEL_NUMBER (C) 00002 '2'
LEVEL_NUMBER (C) 00003 '2'
MEMBER_CONDITION (C) 00001 'ENCODED'
MEMBER_CONDITION (C) 00002 'ENCODED'
MEMBER_CONDITION (C) 00003 'ENCODED'
MEMBER_NAME (C) 00001 'EMP-IDENT'

 ASG-Manager Products Procedures Language

88

MEMBER_NAME (C) 00002 'EMP-NAME'
MEMBER_NAME (C) 00003 'EMP-ADDR'
MEMBER_KEY (C) 00001 '1171864'
MEMBER_KEY (C) 00002 '68512'
MEMBER_KEY (C) 00003 '332876'
MEMBER_TYPE (C) 00001 'GROUP'
MEMBER_TYPE (C) 00002 'ITEM'
MEMBER_TYPE (C) 00003 'ITEM'
MINIMUM_LENGTH (C) 00001 '100'
MINIMUM_LENGTH (C) 00002 '50'
MINIMUM_LENGTH (C) 00003 '50'
NAME_BOUND (C) INDEX ENTRY ONLY
NAME_BOUND_VALUE (C) INDEX ENTRY ONLY
OCC_EXPAND_RECORD (C) 00001 '3'
OFFSET (C) 00001 '0'
OFFSET (C) 00002 '0'
OFFSET (C) 00003 '50'
PICTURE (C) INDEX ENTRY ONLY
REDEFINED (C) INDEX ENTRY ONLY
REDEFINED_NAME (C) INDEX ENTRY ONLY
REDEFINED_RECORD (C) INDEX ENTRY ONLY
REDEFINES_LENGTH (C) INDEX ENTRY ONLY
REQ_FORM_VERSION (C) 00001 'YES' 2.5
REQ_FORM_VERSION (C) 00002 'YES' 2.5
REQ_FORM_VERSION (C) 00003 'YES' 2.5
ROUNDED_TRUNCATED (C) INDEX ENTRY ONLY
SIGN (C) INDEX ENTRY ONLY
SIGN_POSITION (C) INDEX ENTRY ONLY
SIGN_SEPARATION (C) INDEX ENTRY ONLY
TOTAL_DIGITS (C) 00002 '50'
TOTAL_DIGITS (C) 00003 '50'
USAGE (C) INDEX ENTRY ONLY
VARIABLE_REDEFINES_LENGTH (C) INDEX ENTRY ONLY
VERIFIED_NAME (C) 00001 'EMP-IDENT'
VERIFIED_NAME (C) 00002 'EMP-NAME'
VERIFIED_NAME (C) 00003 'EMP-ADDR'
VERSION (C) 00002 '1'
VERSION (C) 00003 '1'

Refer to the VLIST directive for details of the format of this output.

If a DEXPANDed member is not an ITEM then fields such as VERSION,
FRACTION_DIGITS, DATA_TYPE, BIT_OFFSET, JUSTIFICATION, PICTURE, etc.
are set to null.

MEMBER_CONDITION contains information as to whether a member is encoded or a
dummy.

MEMBER_NAME is the DEXPANDed member’s name.

7 Executive Commands

89

VERIFIED_NAME is the edited and verified name of the DEXPANDed member’s
name, or the ALIAS or KNOWN-AS name if requested. If a language is specified, the
VERIFIED-NAME will conform to the naming conventions used in the named language
and should be used for output to that environment.

OFFSET represents the decimal offset of the storage fields computed for the members
constituting a storage block or record.

LEVEL_NUMBER is the hierarchical level of the field. Level numbers commence at 0
for CONVENTIONAL-FILES and '1' for GROUP and ITEM members and are
incremented by one for successively lower levels.

FIELD_LENGTH is the computed length of the storage field in bytes.

DATA_TYPE is the form-description of a member, if the member is an ITEM.

ALIGNMENT shows whether the ITEM is aligned in storage and on what word
boundary.

In addition, both the above variables and the following are generated for contained
members. If access is not authorized then the fields for any member a user cannot access
are set to null.

REDEFINED is set to 'REDEFINED' if the contained member is followed by an ELSE
clause.

REDEFINED_NAME is set to the member name of the first redefined member.

REDEFINED_RECORD is set to the array number of the first redefined member.

REDEFINES_LENGTH is set to the maximum length of all the redefining members.

Maintaining Variables for Two or More Members
Information from several DACCESSed (or DEXPANDed) members or index-names can
be made available for processing at the same time by associating a cursor number with
each member or index-name, thereby suffixing the variable names generated for each
member or index-name with the relevant cursor number.

This can be done by entering:

DACCESS MEMBER member-name CURSOR c;

Or

DEXPAND MEMBER member-name CURSOR c;

All the variables generated are then suffixed by the cursor number, represented by c.

 ASG-Manager Products Procedures Language

90

c is an integer in the range 1 to 32767.

For example, the command:

DACCESS MEMBER EMP-ADDR CURSOR 5;

generates variables suffixed by 5 such as:

ACCESS_MEMBER_5
COUNT_DESCRIPTION_5

If a second DACCESS takes place with the same cursor number then the variables for the
first DACCESSed member with the same cursor number are temporarily nullified until
the second DACCESSed member is released. When the member with the same cursor
number is released the variables for the previously DACCESSed member are
regenerated.

The CURSOR c clause is used to keep the variables of a first and second DACCESSed
member (and others if needed) available for processing.

The DRETRIEVE and DRELEASE commands will act on the last DACCESSed member
with the same cursor number.

The command:

DRETRIEVE FIRST CONTAINS;

retrieves the first occurrence of a CONTAINS clause for the last member DACCESSed
with no cursor number specified.

The command:

DRETRIEVE FIRST CONTAINS CURSOR 3;

retrieves the first occurrence of a CONTAINS clause for the last member DACCESSed
with a cursor number specified as '3'.

If a DRETRIEVE or DRELEASE CURSOR c command does not correspond to a
DACCESS command with the same CURSOR c number then an error message is output.

A DRELEASE command with the CURSOR c clause releases the last member
DACCESSed with the specified cursor.

7 Executive Commands

91

DEXPAND Syntax

where:

c is an integer in the range 1 to 32767

v is an unsigned integer specifying a number from 1 to 15

alias-type is a keyword from the alias-type keyword list of the repository

alias-number can be any number from 1 to the maximum number of general
aliases allowed in your repository.

DRELEASE

The DRELEASE command releases variables generated by a DACCESS or DEXPAND
command.

To releases a DACCESSed member and nullify the variables generated for it enter:

DRELEASE MEMBER member-name;

To release a DACCESSed catalog classification, alias or indexed attribute respectively,
enter:

DRELEASE CATALOGUE catalogue-name;

� � �DEXPAND MEMBER member-name
CURSOR c

� �

FOR COBOL
BAL
PL/I
PL/1
PL/IF
PL/1F
PLI
PL1
PLIF
PL1F

� �

USE
USING

ENTERED-AS
HELD-AS
REPORTED-AS
DEFAULTED-AS

VERSION v

� �

GIVING KNOWN-AS

� �

�;
.ALIAS

WITH-ALIAS
alias-type
alias-number

 ASG-Manager Products Procedures Language

92

or

DRELEASE ALIAS alias-name;

or

DRELEASE ATTRIBUTE attribute-name;

To release a member which has been DEXPANDed with a cursor number, enter:

DRELEASE EXPANDED member-name CURSOR c;

To release a member which has been DACCESSed by its key, enter:

DRELEASE KEY key;

It is also possible to release a member which was DACCESSed by its key by using the
DRELEASE MEMBER command.

To release all DACCESSed members and all variables relating to them enter:

DRELEASE ALL;

To release all DACCESSed members accessed in this executive routine and to reactivate
DACCESSed members from a higher level executive routine, enter:

DRELEASE LOCAL;

Rules on Releasing Variables
When a DRELEASE command is issued the index name specified is released. However,
if a previous member has been DACCESSed or DEXPANDed, the variables generated by
the most recent DACCESS or DEXPAND command are nullified and the originally
DACCESSed or DEXPANDed member remains in virtual storage until that too has been
DRELEASEd.

If CURSOR c is specified in the DRELEASE command, the member which is released is
the one DACCESSed or DEXPANDed with the same cursor number.

All executive routine variables representing the attributes of a DACCESSed or
DEXPANDed member will be set to null, when a DRELEASE command is entered.

If a DACCESSed or DEXPANDed member superseded a member with the same cursor
number which was not DRELEASEd then the variables generated by the first member
will be re-activated after the second is DRELEASEd, and will appear to the user as when
previously processed.

7 Executive Commands

93

If LOCAL is specified then all members or index-names DACCESSed or DEXPANDed
in this executive routine will be DRELEASEd and any superseded members from a
higher level executive routine will be re-activated. This processing also takes place
automatically when a user exits an executive routine for a higher level executive routine.

If ALL is specified then all DACCESSed or DEXPANDed members are DRELEASEd
and all the variables generated by all DACCESS or DEXPAND commands are set to null,
regardless of the level of the executive routine.

If the DRELEASE of a member means that the particular member is no longer used by
any DACCESS or DEXPAND command then the copy of the member in virtual storage
is released. A subsequent DACCESS or DEXPAND command run against that member
may pick up a different definition if the member has been updated by other users in the
meantime.

DRELEASE Syntax

where:

member-name is the name of a member on the Manager Products repository

class is a catalog classification

alias-name is the name of an alias

attribute-name is the name of an indexed attribute

key-variable-name is the name of a numeric key identifying a member, alias,
catalog or indexed attribute on the Manager Products repository

c is an integer in the range 1 to 32767.

� � �DRELEASE

� �

CURSOR c
MEMBER member-name
CATALOGUE classification
ALIAS alias-name
ATTRIBUTE attribute-name
KEY key-variable-name
ALL
LOCAL

� � �;
.

 ASG-Manager Products Procedures Language

94

DRETRIEVE
The DRETRIEVE command is used:

• To retrieve further information about a previously DACCESSed member, or

• To retrieve records generated by a DEXPAND command.

The following types of data can be DRETRIEVEd from a DACCESSed encoded
member:

• Text or free form text clauses

• Any repeating clauses in the member’s definition

• All used-by or reference information

• Used-by or reference information for a particular relationship type or class

• Catalogue-keys, attribute-keys, and alias-keys

• Non-repeating clauses suppressed in a DACCESS SUPPRESS command.

To see, for a particular member type:

• Which clauses repeat

• The variables associated with each clause

enter:

SHOW MEMBER-TYPE FOR MEMBER-TYPE member-type;

Records generated by the DEXPAND command can be DRETRIEVEd from a
DEXPANDed encoded member.

If you attempt to DRETRIEVE a clause that is not present in the member an error
message is output.

A dummy member can be DACCESSed, but attempting to DRETRIEVE anything but
used-by or reference information is invalid.

When a clause is retrieved, an occurrence variable OCC_clause-id, previously set up by
the DACCESS command, is given a value, increasing by one each time an occurrence is
DRETRIEVEd.

If a DRETRIEVE clause keyword is the same as the variable name for that clause, you
must use literal delimiters. For example:

literal #

DRETRIEVE PREVIOUS #NOTE#;

7 Executive Commands

95

If you do not do this the keyword will be replaced by the variable value during
substitution.

If no records are found for the option specified in the DRETRIEVE command an error
message is output. ASG recommends that you do a check before issuing the
DRETRIEVE. For example:

if COUNT_clause-id > 0 then do

 DRETRIEVE FIRST clause-id;

 ...

end

Retrieving Repeating Clauses
To retrieve the first occurrence of a repeating clause, enter:

DRETRIEVE FIRST clause-id;

To access occurrences of a repeating clause one by one in the order they occur, enter:

DRETRIEVE NEXT clause-id;

If NEXT is requested when no clauses have previously been retrieved then the first
occurrence will be returned.

If LAST is specified then the last occurrence of a clause will be returned.

To access in reverse order, use:

DRETRIEVE PREVIOUS clause-id;

If PREVIOUS is specified when no clauses have previously been DRETRIEVEd then the
LAST entry will be returned.

If CURRENT is specified the attributes of the current occurrence of the clause will be
re-generated. This clause can be used when dealing with data definitions that have
common attribute names within unique clauses. For example, to DRETRIEVE the IF
clause within a GROUP CONTAINS after DRETRIEVEing the IF from within the
GROUP’s ELSE clause enter:

DRETRIEVE CURRENT CONTAINS;
DRETRIEVE FIRST IF;

DRETRIEVE CURRENT is allowed to generate variables suppressed for non-repeating
clauses when DACCESS SUPPRESS ATTRIBUTES or SUPPRESS
ALL-ATTRIBUTES clause was previously issued.

 ASG-Manager Products Procedures Language

96

To access a specific occurrence of a variable in a clause, enter:

DRETRIEVE OCCURRENCE n clause-id;

where n is the occurrence number of a variable in a clause.

If the SUPPRESS COUNTS or SUPPRESS ALL-ATTRIBUTES clause was specified in
the DACCESS command (preventing count variables being generated), DRETRIEVE
COUNT is used to return the count variable for a specified repeating clause, that is, it sets
up the COUNT_clause-id variable. For example:

DRETRIEVE COUNT NOTE;

If the value of the count variable is not zero, the user can then DRETRIEVE the clause.

With the clauses FIRST, NEXT, LAST, PREVIOUS, and OCCURRENCE, all attributes
for any clauses associated with any previous occurrence of that clause will be nullified
and new control information will be generated for the lower level occurrences associated
with the clause.

To access all the occurrences of a clause, enter:

DRETRIEVE ALL clause-id;

If ALL is specified, the attributes of each occurrence of the clause will be made available
in arrays.

Retrieving Used-By or Reference Information
To retrieve all used-by information, information about members that use the
DACCESSed member, enter:

DRETRIEVE ALL USED-BYS;

(This command corresponds to the WHICH MEMBERS USE command.)

To retrieve all reference information, information about members that are used by the
DACCESSed member, enter:

DRETRIEVE ALL REFERENCES;

(This command corresponds to the WHICH MEMBERS CONSTITUTE command.)

Variables giving used-by information have the prefix USED_. Variables giving reference
information have the prefix REF_.

7 Executive Commands

97

There are two types of relationship:

• Entity relationship (ER) relationship types

• Entity association (EA) relationship types

To retrieve reference information for a specified relationship type or relationship class,
enter:

DRETRIEVE ALL REFERENCES keyword VIA name;

where keyword is one of these:

If keyword is omitted then the CONNECTED keyword is assumed.

For example, to retrieve reference information for the ER relationship type CALLS,
enter:

DRETRIEVE ALL REFERENCES RELATED VIA CALLS;

To retrieve reference information for the EA relationship type CALLS, enter:

DRETRIEVE ALL REFERENCES ASSOCIATED VIA CALLS;

To retrieve reference information for the relationship type or relationship class CALLS,
enter:

DRETRIEVE ALL REFERENCES CONNECTED VIA CALLS;

The reference information retrieved can include the following:

• The number of relationships (in COUNT_REFERENCES)

• The member names (in REF_NAME)

• The member types (in REF_MEMBER_TYPE)

• The member key values (in REF_KEY)

• The relationship types (in REF_RELATIONSHIP)

• For ER relationships only, the key values of the relationship members (in
REF_RELATIONSHIP_KEY)

ASSOCIATED Name is the name of an EA relationship type. Only the specified EA
information is retrieved.

RELATED Name is the name of an ER relationship type or relationship class.
Only the specified ER information is retrieved.

CONNECTED Name is the name of a relationship type or relationship class. The
specified ER and EA information is retrieved.

 ASG-Manager Products Procedures Language

98

• The base member types (in REF_BASE_TYPE)

• The forms of referenced members (in REF_FORM)

• The versions of referenced members (in REF_VERSION)

• The forms of the DACCESSed member (in REF_ACCESS_FORM)

• The versions of the DACCESSed member (in REF_ACCESS_VERSION).

If SUPPRESS IDENTITY is specified then the reference information consists of the
following variables only:

• REF_FORM

• REF_BASE_TYPE

• REF_KEY

• REF_RELATIONSHIP

• REF_VERSION.

To retrieve a member’s first reference, enter:

DRETRIEVE FIRST REFERENCES;

Retrieving used-by information is similar to retrieving reference information. You use the
USED-BY keyword instead of the REFERENCES keyword, and variable names are
prefixed by USED_ instead of by REF_.

If the WITH USED-BYS or WITH REFERENCES clause was specified in the
DACCESS command the member records are already in virtual storage, but the variables
are only generated after the DRETRIEVE. Otherwise the records are read in when you do
the DRETRIEVE.

The referring or referenced members can be accessed with a subsequent DACCESS KEY
command.

If you only want the names of EA referenced members it is quicker to DRETRIEVE the
clause rather than the references. For example, the command:

DRETRIEVE ALL CONTAINS;

is faster than:

DRETRIEVE ALL REFERENCES ASSOCIATED VIA CONTAINS;

7 Executive Commands

99

Example 1
Suppose the group EMP-IDENT uses the item EMP-ADDR via the EA relationship type
CONTAINS. The instructions:

DACCESS MEMBER EMP-ADDR;
if COUNT_USED_BYS > 0 then do
 DRETRIEVE COUNT USED-BYS ASSOCIATED VIA CONTAINS ;
 if COUNT_USED_BYS > 0 then do
 DRETRIEVE FIRST USED-BYS ASSOCIATED VIA CONTAINS ;
 vlist command only USED_
 end
end

give the following output:

USED_ACCESS_FORM (C) 00001 'HELD-AS'
USED_ACCESS_VERSION (C) 00001 '1'
USED_BASE_TYPE (C) 00001 'GROUP'
USED_FORM (C) 00001 'HELD-AS'
USED_KEY (C) 00001 '6728'
USED_MEMBER_TYPE (C) 00001 'GROUP'
USED_NAME (C) 00001 'EMP-IDENT'
USED_RELATIONSHIP (C) 00001 'CONTAINS'
USED_VERSION (C) INDEX ENTRY ONLY

Example 2
Suppose the program CM00 references the modules M0 and M1 via the ER relationship
type PROGRAM-CONTAINS-MODULE. The instructions:

DACCESS MEMBER CM00;
if COUNT_REFERENCES > 0 then do
 DRETRIEVE COUNT REFERENCES RELATED VIA -
 PROGRAM-CONTAINS-MODULE ;
 if COUNT_REFERENCES > 0 then do
 DRETRIEVE ALL REFERENCES RELATED VIA -
 PROGRAM-CONTAINS-MODULE ;
 vlist command only REF_
 end
end

 ASG-Manager Products Procedures Language

100

give the following output:

REF_ACCESS_FORM (C) INDEX ENTRY ONLY
REF_ACCESS_VERSION (C) INDEX ENTRY ONLY
REF_BASE_TYPE (C) 00001 'MODULE'
REF_BASE_TYPE (C) 00002 'MODULE'
REF_FORM (C) INDEX ENTRY ONLY
REF_KEY (C) 00001 '5388'
REF_KEY (C) 00002 '10660'
REF_MEMBER_TYPE (C) 00001 'MOD'
REF_MEMBER_TYPE (C) 00002 'MOD'
REF_NAME (C) 00001 'M0'
REF_NAME (C) 00002 'M1'
REF_RELATIONSHIP (C) 00001 'PROGRAM-CONTAINS-MODULE'
REF_RELATIONSHIP (C) 00002 'PROGRAM-CONTAINS-MODULE'
REF_RELATIONSHIP_KEY (C) 00001 '61518'
REF_RELATIONSHIP_KEY (C) 00002 '52467'
REF_VERSION (C) INDEX ENTRY ONLY

Specifying Variable Names
The AS clause is only allowed for the retrieval of attributes or text or free-form text. Any
DRETRIEVEd attribute or text string will be handed to the executive language software
identified by a variable name specified in the AS clause instead of a variable name
derived from the clause’s identifier keyword. For example:

DRETRIEVE ALL DESCRIPTION AS TEXT;

If AS is specified, CURSOR c will have no effect on the name specified in the AS clause.
However it must be entered to identify the accessed member.

The AS clause will allow common routines to be written for the processing of different
clauses. The variable named in the AS clause will not be automatically removed when
any controlling record is removed, or when a member is DRELEASEd.

Consider the following example. An executive routine calls a second executive routine,
TEXTEXEC, to process text clauses. The count variable is checked and then the
executive routine is run. The clause identifier keyword is used as a input parameter.

...
IF COUNT_NOTE NE 0 THEN DO
TEXTEXEC NOTE ;
...

7 Executive Commands

101

TEXTEXEC might include the following lines:

...
DRETRIEVE COUNT &P0 AS TEXT
-LOOP
DRETRIEVE NEXT &P0 AS TEXT;
WRITEF TEXT
IF OCC_TEXT NE COUNT_TEXT THEN GOTO LOOP
EXIT

Suppressing Information
The SUPPRESS clause reduces the processing time for an executive routine if the user is
interested in only a few clauses.

If the SUPPRESS COUNTS clause is specified in the DACCESS command,
DRETRIEVE COUNT can be used to return the number of occurrences of a repeating
clause, that is, to set up the count variable for the clause specified.

DRETRIEVE COUNT is used solely for generating a count variable; it cannot be used
with the WITH or SUPPRESS clauses.

Consider the following section of an executive routine:

DACCESS MEMBER member-name SUPPRESS ATTRIBUTES;
IF COUNT_DESCRIPTION EQ 0 THEN GOTO NEXTMEMBER
DRETRIEVE ALL DESCRIPTION WITH ATTRIBUTES;

In the above example, the executive processor will not spend CPU time generating
variables that are not needed by the user. The count variable is tested and if it indicates
that there is at least one occurrence of a DESCRIPTION clause the executive routine can
continue.

If a DACCESS SUPPRESS command is issued, the suppressed variables can be
generated for the current DRETRIEVE command if the WITH clause is specified. For
example,

...
DACCESS MEMBER member-name SUPPRESS ALL-ATTRIBUTES;
DRETRIEVE COUNT clause-id;
IF COUNT_clause-id NE 0 THEN DO
DRETRIEVE ALL clause-id WITH ATTRIBUTES;
...

This executive routine suppresses all variables apart from a member’s name and type, its
"condition" and base type. To retrieve a repeating clause’s count variable a DRETRIEVE
COUNT command must then be issued. After checking to see that there is at least one
occurrence, the required clause can be retrieved with its attributes.

 ASG-Manager Products Procedures Language

102

If DRETRIEVE WITH ALL-ATTRIBUTES is specified the attributes and count
variables of the clause being processed (suppressed in a previous DACCESS SUPPRESS
ALL-ATTRIBUTES) are generated during processing of the current DRETRIEVE
command.

DRETRIEVE WITH COUNTS is used to generate count variables for clauses dependent
on the clause being DRETRIEVEd.

If DRETRIEVE WITH COUNTS is specified then only count variables dependent on the
clause being DRETRIEVEd will be generated. The following commands:

DACCESS MEMBER member-name SUPPRESS COUNTS;
DRETRIEVE COUNT CONTAINS;
IF COUNT_CONTAINS NE 0 THEN DO
DRETRIEVE ALL CONTAINS WITH COUNTS;

will make the following COUNT variables (assuming there are six occurrences of the
CONTAINS clause) available:

COUNT_CONDITION (C) 00001 '0'
COUNT_CONTAINS (C) 00001 '6'
COUNT_ELSE (C) 00001 '0'
COUNT_INDEXED_BY (C) 00001 '0'

If DRETRIEVE WITH ATTRIBUTES is specified then the attributes of the clause being
processed (suppressed in a previous DACCESS SUPPRESS ATTRIBUTES) are
generated during processing of the current DRETRIEVE command.

If SUPPRESS IDENTITY is specified then the names of used-bys or references will be
suppressed during retrieval of USED-BYS, REFERENCES or ’KEYS’.

Accessing DEXPANDed Information
To make all the information generated by a DEXPAND command available for
processing, enter:

DRETRIEVE ALL EXPAND-RECORD;

To make the records generated by a DEXPAND command available for processing, one
by one in the order they occur, enter:

DRETRIEVE NEXT EXPAND-RECORD;

Until a DRETRIEVE EXPAND-RECORD command is issued, no records will be
available.

7 Executive Commands

103

Example
A member, called EMP-ADDR, has been DACCESSed.

If the executive command:

DRETRIEVE ALL ALIAS;

is then issued, the following variables are generated (in addition to those already
generated by the DACCESS command):

ALIAS_NAME (C) 00001 'EMPLOYEE-ADDRESS'
ALIAS_NAME (C) 00002 'EMP-ADDR'
ALIAS_NAME (C) 00003 'EMPADDR'
ALIAS_TYPE (C) 00002 'COBOL'
ALIAS_TYPE (C) 00003 'ASSEMBLER'

Note that the occurrence variable of ALIAS generated by the DACCESS command is
now given a value:

OCC_ALIAS (C) 00001 '3'

The occurrence variable has a value of 3 because all occurrences of the ALIAS clause are
available for processing. DRETRIEVE ALL ALIAS was specified. All the aliases in the
member’s definition have been generated in a variable array. If FIRST had been
specified, the value of OCC_ALIAS would be 1, and only the first ALIAS_NAME and
ALIAS_TYPE would have appeared above.

The occurrence and count variables can be used to control loops. For example:

-LOOP
DRETRIEVE NEXT DESCRIPTION;
IF OCC_DESCRIPTION LT COUNT_DESCRIPTION THEN GOTO LOOP
-NEXT

Retrieving Unique Key Identifiers
To retrieve all the unique key identifiers for a member’s catalog classifications, enter:

DRETRIEVE ALL CATALOGUE-KEYS;

To retrieve all the unique key identifiers for a member’s aliases, enter:

DRETRIEVE ALL ALIAS-KEYS;

To retrieve all the unique key identifiers for a member’s indexed attributes, enter:

DRETRIEVE ALL ATTRIBUTE-KEYS;

 ASG-Manager Products Procedures Language

104

The key variables that are generated can then be accessed with the DACCESS KEY
command if required.

Maintaining Variables for Two or More Members
Information from several DACCESSed (or DEXPANDed) members or index-names can
be made available for processing at the same time by associating a cursor number with
each member or index-name, thereby suffixing the variable names generated for each
member or index-name with the relevant cursor number.

This can be done by entering:

DACCESS MEMBER member-name CURSOR c;

Or

DEXPAND MEMBER member-name CURSOR c;

All the variables generated are then suffixed by the cursor number, represented by c. c is
an integer in the range 1 to 32767.

For example, the command:

DACCESS MEMBER EMP-ADDR CURSOR 5;

generates variables suffixed by 5 such as:

ACCESS_MEMBER_5
COUNT_DESCRIPTION_5

If a second DACCESS takes place with the same cursor number then the variables for the
first DACCESSed member with the same cursor number are temporarily nullified until
the second DACCESSed member is released. When the member with the same cursor
number is released the variables for the previously DACCESSed member are
regenerated.

The CURSOR c clause is used to keep the variables of a first and second DACCESSed
member (and others if needed) available for processing.

The DRETRIEVE and DRELEASE commands will act on the last DACCESSed member
with the same cursor number.

The command:

DRETRIEVE FIRST CONTAINS;

retrieves the first occurrence of a CONTAINS clause for the last member DACCESSed
with no cursor number specified.

7 Executive Commands

105

The command:

DRETRIEVE FIRST CONTAINS CURSOR 3;

retrieves the first occurrence of a CONTAINS clause for the last member DACCESSed
with a cursor number specified as '3'.

If a DRETRIEVE or DRELEASE CURSOR c command does not correspond to a
DACCESS command with the same CURSOR c number then an error message is output.

A DRELEASE command with the CURSOR c clause releases the last member
DACCESSed with the specified cursor.

DRETRIEVE Syntax

where:

n is an integer in the range 32767

selection is:

clause-id is a clause identifier

verb is:

� � �DRETRIEVE FIRST
NEXT
CURRENT
PREVIOUS
LAST
ALL
OCCURRENCE n
COUNT

selection
EXPAND-RECORD

� � �;
CURSOR c .WITH ATTRIBUTES

WITH COUNTS
WITH ALL-ATTRIBUTES
AS as-name
SUPPRESS IDENTITY

� �clause-id
ALIAS-KEYS
ATTRIBUTE-KEYS
CATALOGUE-KEYS
USED-BYS
REFERENCES

verb
VIA type

� �RELATED
ASSOCIATED
CONNECTED

 ASG-Manager Products Procedures Language

106

type is a relationship type or a relationship-type class.

c is an integer in the range 1 to 32767

as-name is a name to replace the generated command variable’s name when an attribute,
or text, or free form text clause is processed.

RELINQUISH
The RELINQUISH command terminates a Logical Unit of Work (LUW). To terminate
an LUW for the repository, enter:

RELINQUISH DICTIONARY;

To terminate an LUW for the MP-AID, enter:

RELINQUISH MP-AID;

How transactions carried out as an LUW are processed is determined by keywords
specified in the RESERVE and RELINQUISH commands.

If you wish to commit all updates to the repository together when an LUW has finished
executing, specify ROLLBACK in the RESERVE command and terminate the LUW by
entering:

RELINQUISH DICTIONARY COMMIT;

In the event of any abnormal termination, no updates are committed and the repository is
recovered to the state it was in before the LUW began executing.

You may wish to commit updates only if they produce the result you want, for instance,
only if members encode successfully after updating. If they do not, you need not commit
the updates, but can instead restore the repository to the state it was in prior to executing
the LUW. To do this you need to specify ROLLBACK in the RESERVE command and
terminate the LUW by entering:

RELINQUISH DICTIONARY ROLLBACK;

ROLLBACK may be specified only if you specified ROLLBACK in the RESERVE
command. If COMMIT is specified (either specifically or by default) in the RESERVE
command, you cannot specify ROLLBACK when terminating an LUW.

There are no optional keywords available with the RELINQUISH MP-AID subcommand.

If you do not explicitly terminate an LUW with a RELINQUISH command, the LUW is
terminated automatically when the highest level executive routine has finished executing.

7 Executive Commands

107

RELENQUISH Syntax

RESERVE

The RESERVE command defines the start of a Logical Unit of Work (LUW). An LUW
is a group of commands that are treated as one command for the purposes of processing
and can be treated as one command for recovery purposes. You can define an LUW for
the repository or the MP-AID.

To define the beginning of an LUW for the repository, enter:

RESERVE DICTIONARY mode;

To define the beginning of an LUW for the MP-AID, enter:

RESERVE MP-AID mode;

where mode is UPDATE if the LUW contains update or a combination of update and
interrogation commands or READ-ONLY if the LUW contains interrogation commands
only. Updates are not allowed in READ-ONLY LUWs.

Synonyms for these keywords are EXCLUSIVE and SHARED respectively.

To terminate an LUW, use the RELINQUISH command.

If you define a repository LUW in UPDATE/EXCLUSIVE mode, you may choose to
commit each update as it completes. Committing an update causes a permanent change to
the repository (or MP-AID for an MP-AID LUW). To commit each update as it
completes, enter:

RESERVE DICTIONARY UPDATE COMMIT;

Or

RESERVE DICTIONARY UPDATE;

If you do not specify a keyword after the mode, the default setting is COMMIT. If any
abnormal termination occurs during the processing of a repository update, the repository
is automatically recovered to the state it was in before the update began.

� � �RELENQUISH DICTIONARY
COMMIT
ROLLBACK

MP-AID

� � �;
.

 ASG-Manager Products Procedures Language

108

Alternatively, you may commit all updates together when the LUW is complete by
beginning the LUW:

RESERVE DICTIONARY UPDATE ROLLBACK;

and specifying COMMIT in the RELINQUISH command when you terminate the LUW.
If any abnormal termination occurs, the repository is recovered to the state it was in
before the LUW began executing.

You cannot specify ROLLBACK when you terminate the LUW if COMMIT is specified
(or allocated by default) at the beginning of the LUW, since updates are committed as
they complete and cannot therefore be rolled back.

The COMMIT and ROLLBACK keywords are not available in READ-ONLY/SHARED
mode or for an MP-AID LUW.

RESERVE Syntax

Note that the SPEED keyword is available for use by Controllers and systems
administrators only.

SENDF
The SENDF command opens a destination for subsequent output from one or more
WRITEF directives. This destination can be:

• A USER-MEMBER on the MP-AID

• A sequential dataset

• A partitioned dataset

and/or the primary/secondary output device.

� � �RESERVE

� �
COMMIT
ROLLBACK

DICTIONARY UPDATE
EXCLUSIVE

SPEED
READ-ONLY
SHARED

MP-AID
COMMIT

UPDATE
EXCLUSIVE

SPEED
READ-ONLY
SHARED

� � �;
.

7 Executive Commands

109

To open the primary/secondary output device only (so subsequent WRITEF directives
will have the same effect as a SAY directive), enter:

SENDF PRINT;

If you specify an external file or a USER-MEMBER as a destination, then by default,
output is sent to both that destination and the primary/secondary output device.

To send data to that destination only (so that only messages are printed to the
primary/secondary output device), enter:

SENDF destination NOPRINT;

destination specifies an external dataset or USER-MEMBER.

Note:
For the DOS or CICS environments, SENDF is only valid for USER-MEMBERs.

You can use multiple SENDF commands, to open more than one destination, within an
executive routine or a nest of executive routines. Output is always sent to the most
recently opened destination. To close the most recently opened destination, use the
CLOSEF command.

You may want to send data to a previously opened destination. You can use the SENDF
command to re-open this destination, without needing to close any other destinations.
You cannot alter the characteristics of the destination, as it is already open, so any options
specified with a second or subsequent SENDF command are ignored.

Sending Output to a USER-MEMBER
To open a private or public USER-MEMBER on the MP-AID as a destination for output
from subsequent WRITEF directives, enter:

SENDF member-type member-name options;

where:

member-type is a type of USER-MEMBER on the MP-AID:

— USER-MEMBER or PRIVATE-USER-MEMBER, to define the
USER-MEMBER as private (only accessible by a user with the currently active
Logon Identifier)

— PUBLIC-USER-MEMBER, to define the USER-MEMBER as public
(accessible by any Logon Identifier)

 ASG-Manager Products Procedures Language

110

When appending or replacing the contents of an existing member the user who
created that member can change it from private to public, or the reverse, if the
original destination specified by a SENDF command has been closed (by a
CLOSEF command or by the termination of the original executive routine). Users
with different Logon Identifiers can create private USER-MEMBERs with the same
names.

member-name is the name of the USER-MEMBER.

options define how the output is to be filed. These keywords are: NEW,
APPEND, or REPLACE.

— NEW: defines the destination USER-MEMBER to be a new member. If the
member already exists, the output will not be sent to the USER-MEMBER, the
SENDF command will fail and subsequent output from the WRITEF directive
will instead be directed to the primary/secondary output device (even if the
NOPRINT keyword had also been specified).

— APPEND: subsequent WRITEF directives will append data to the specified
USER-MEMBER. If this member does not exist, this has the same effect as
NEW.

— REPLACE: subsequent WRITEF directives will be output data to the specified
USER-MEMBER, replacing that member if it already exists. If the member
does not exist, this has the same effect as NEW.

By default, NEW is assumed for the first WRITEF directive following the SENDF
command. For subsequent WRITEF directives to the same destination, the default is
APPEND.

Sending Output to a Sequential Dataset
To open a sequential dataset as a destination for subsequent WRITEF directives, enter:

SENDF SEQUENTIAL file sequential-options;

where:

file is the name of the sequential file. It is the logical file name (ddname or
dtfname) used in job control statements to define the external dataset name
(physical file name) of the file.

sequential-options define the characteristics of the sequential dataset.
Characteristics defined with the SENDF command take precedence over those
defined in job control statements.

7 Executive Commands

111

Characteristics of a new dataset must be defined either in the job control statements for
that dataset, or as part of the SENDF command. Characteristics of an existing dataset
need not be defined; if they are not, the dataset is replaced with a new dataset, which has
the same characteristics.

sequential-options can include the following:

• FORMAT FIXED or FORMAT VARIABLE

• RECORD-SIZE followed by the required logical record size in bytes.

• BLOCK-SIZE followed by the required block size in bytes.

Note:
If you specify FORMAT VARIABLE, the maximum length of the user-supplied data is 4
bytes less than the record size you specify.

The permitted values for block and record sizes are:

• For FIXED format:

— The record length must be between 1 and 32760 bytes

— The blocksize must be between 16 and 32760 bytes and must be a multiple of
the record length

• For VARIABLE format:

— The record length must be between 5 and 32756 bytes

— The blocksize must be between 16 and 32760 bytes and must be at least 4 bytes
greater than the record length

The following is an example of a SENDF command for output to a FIXED format
dataset:

SENDF SEQUENTIAL FILE4 FORMAT FIXED RECORD-SIZE 80 BLOCK-SIZE 8000;

The following is an example of output to a VARIABLE format dataset:

SENDF SEQUENTIAL FILE4 FORMAT VARIABLE RECORD-SIZE 300 BLOCK-SIZE
10000;

For fixed length output, short records are right padded as necessary with blanks.

The current executive routine will be terminated if any overlength records are generated
by the WRITEF directive.

 ASG-Manager Products Procedures Language

112

Sending Output to a Partitioned Dataset
To specify output to a partitioned dataset (FIXED or VARIABLE format), enter:

SENDF PARTITIONED file MEMBER member NEW;

To specify output to a partitioned dataset, replacing any existing member, enter:

SENDF PARTITIONED file MEMBER member REPLACE;

where:

file is the name of the partitioned dataset. It is the logical file name (ddname) used
in job control statements to define the external dataset name (physical file name) of
the file.

member is the required member name of the partitioned dataset. This dataset must
already exist.

Note:
The current executive routine will be terminated if any overlength records are generated
by the WRITEF directive.

SENDF Syntax

where:

destination is:

mp-user is the name of an MP-AID USER-MEMBER

file is the name of a sequential or partitioned dataset. It is the logical file name (ddname
or dtfname) used in job control statements to define the external dataset name (physical
file name) of the file.

� � �SENDF �PRINT ;
.destination

PRINT
NOPRINT

� �PUBLIC-USER-MEMBER mp-user
PRIVATE-USER-MEMBER
USER-MEMBER

NEW
APPEND
REPLACE

SEQUENTIAL file
sequential-options

PARTITIONED file MEMBER member NEW
REPLACE

7 Executive Commands

113

sequential-options are:

rsize is the record length

bsize is the block size.

member is the name of the member of the partitioned dataset.

SREAD
Input to procedures is normally obtained in-line from an active executive routine which
must terminate before input is again read from the Manager Products primary input
device (MPIN). Use the SREAD command to read from MPIN instead of from an
executive routine.

When you use SREAD, input data from MPIN is read into a Procedures Language
command variable named MPCM_SOURCE. This command variable is available to the
calling executive upon return from the SREAD command.

Reading from MPIN terminates when a standard Manager Products terminator
(semicolon or period) is encountered in position 1 of an input record. Such terminators
are not added to the command variable.

In the example below, the primary command REPLACE is reconfigured to invoke the
executive routine £REPLACE, using the command:

SET PRIMARY-COMMAND REPLACE AS £REPLACE;

The executive routine £REPLACE carries out checks on, and modifications to, a
user-supplied member definition, as described below. (See the ASG-Manager Products
Systems Administrator’s Manual for information on the SET PRIMARY-COMMAND
command.)

� �
FORMAT VARIABLE

FIXED
RECORD-SIZE
RECORDSIZE

rsize

 ASG-Manager Products Procedures Language

114

£REPLACE uses SREAD to retrieve the source definition of the member to be replaced.
If required, the member name and definition is modified. For example:

MPXX LITERAL=:
NOPR PUSH;
NOPR SWI OFF MESS NUM 0;
SREAD;
IF SUBSTR(MPCM_SOURCE(1),1,2) EQ ’IT’ AND SUBSTR(&P0,1,3) NE 'IT-' -
 THEN CALL PREFIX
ELSE IF SUBSTR(MPCM_SOURCE(1),1,2) EQ ’GR’ AND SUBSTR(&P0,1,3) NE -
 'GR-' THEN CALL PREFIX
REPLACE &P0;
DO FOR ARRAYHI(:MPCM_SOURCE:)
MPCM_SOURCE(FDO(DFOR))
END
DESC
MPRE :'Description line added on :&date: at: &time:':
NOTE
MPRE :'Note line added on :&date: at: &time:':
;
REPORT &P0;
NOPR PULL;
EXIT 0
-PREFIX
 &P0 = SUBSTR(MPCM_SOURCE(1),1,2):-:&P0
RETURN

SREAD Syntax

� � �SREAD ;
.

�

115

8 8Directives

This chapter contains the specifications of all directives, in alphabetical order.

CALL . 116

COMMAND. 118

DO. 119

DROP . 121

EXIT. 121

GLOBAL . 122

GOTO. 123

IF. 123

INTERPRET . 126

ITERATE. 128

LEAVE. 129

LITERAL. 130

LOCAL. 131

MESSAGE . 131

MPR . 133

MPRE . 134

MPXX. 134

NOP . 135

PARSE . 135

PARSEOPTION . 137

PROFILE. 137

RELEASE . 138

RETAIN . 140

RETURN . 140

SAY. 141

 ASG-Manager Products Procedures Language

116

SET . 141

SIGNAL . 142

STACK. 143

TRACE. 144

TRANSFER . 145

VLIST. 146

WRITEF. 149

WRITEL . 151

CALL

where:

label-name is the name of a label

variable-name is the name of a user-defined variable array. The name may have
no more than 10 characters.

expression is a parameter to be passed when the user-defined variable array is
executed as a procedure

There are two basic types of construct:

• CALL label-name, which causes an immediate branch to a label. This is similar to
the GOTO directive, except that you return to the most recent active CALL by
executing a RETURN directive.

• CALL ARRAY, which causes a user-defined variable array to be executed as a
procedure.

In both constructs, when a CALL directive is executed, the following settings are stacked:

• The SIGNAL directive settings

• The TRACE directive settings

and active DO loops and instruction blocks are suspended.

� � �CALL �label-name
ARRAY

OLD
NEW variable-name

expression

8 Directives

117

CALL label-name Option
When a RETURN directive is executed:

• The most recent copy of the stacked settings is restored

• DO loops and instruction blocks initiated since the most recent active CALL are
cancelled

• DO loops and instruction blocks suspended at the most recent active CALL are
reactivated.

If there is no active CALL, a RETURN directive causes an error.

The CALL and RETURN directives are useful when you want to call the same piece of
code several times, but do not want to put that code into a separate executive routine.

Example of CALL label-name
The executive routine below takes one parameter, an integer, and outputs the factorial of
that integer.

if arg() ne 1 then exit
if type(&p0) ne N then exit
if &p0 gt 12 then exit
i = &p0
call factorial
say j
exit
-factorial
j = 1
do for i
 j = j*fdo(dfor)
end
return

CALL ARRAY Option
Use the keyword NEW if the data which the array currently contains is to be used as the
source for building the procedure. Use the keyword OLD if the array has previously been
executed as a procedure, and you want this version to be executed without reference to
any changes made subsequently to the array. For example:

call array old uvar

indicates that the user-defined variable array uvar should be executed using the currently
built procedure, even though changes have since been made to the variable array.

If you pass a parameter to the procedure, it is subject to Limited Substitution.

 ASG-Manager Products Procedures Language

118

Array procedures are unaffected by the RETAIN directive and by the SET
EXECUTION-RETENTION command. They take the type of the procedure from which
they are CALLed as NEW procedures, and can thus execute all instructions which are
valid for that type of procedure.

The INTERPRET and LITERAL directives may not be used in array procedures.

CALL ARRAY NEW directives may not be used in array procedures if the named array
was used to build a procedure which is still executing.

Procedures built with CALL ARRAY may only subsequently be invoked by the same
means. They may not be invoked with the TRANSFER directive or by referring to them
as if they were user-defined commands.

Example of CALL ARRAY option
The executive routine below shows how the OLD and NEW keywords can be used to
control the directives actually executed.

UV1='SAY VERSION 1'
CALL ARRAY NEW UV1
UV1='SAY VERSION 2'
CALL ARRAY OLD UV1
CALL ARRAY NEW UV1

When executed, this routine gives the following output:

VERSION 1
VERSION 1
VERSION 2

COMMAND

where name is any valid user-defined variable name.

The COMMAND directive declares command variables.

A command variable exists from its declaration until the highest-level executive routine
terminates.

If a command variable already exists with the specified name then that declaration has no
effect.

If a global variable already exists with the specified name then that variable becomes a
command variable.

� � �COMMAND name �

<<<<

8 Directives

119

DO

where:

array-name is the name of an array

n is greater than or equal to zero

For details of condition see the specification of the IF directive

The DO and END directives group a sequence of instructions together into a block. The
block is executed zero or more times.

There are five basic types of construct using DO and END.

• DO instructions END

The block is executed once. This type of construct is used with the IF directive.

IF condition THEN DO
 instruction_1
 instruction_2

 instruction_n
END

• DO array-name() instructions END

The block is executed once for every non-null element of the array. For example,
the instructions:

literal #
a(3) = 0
a(7) = 0
do a()
 say fdo(darray)
END

produce the following output:

3
7

� � �
array-name ()

DO
FOR n
UNTIL condition
WHILE condition

� �

�instruction
<<<<<<<<<<<

� � �END

 ASG-Manager Products Procedures Language

120

• DO FOR expression instructions END

The expression must evaluate to a number n that is greater than or equal to zero.
The block is executed n times.

• DO UNTIL condition instructions END

The block is executed as long as the condition is false. The block is executed at least
once.

• DO WHILE condition instructions END

The block is executed as long as the condition is true. The block can be executed
zero times.

In the combined forms:

DO array-name() FOR
DO array-name() UNTIL
DO array-name() WHILE

the block is executed as many times as there are non-null elements in the array, or
until the FOR, UNTIL or WHILE clause stops the block being repeated.

Blocks can be nested. For example:

DO FOR expression
 DO WHILE condition
 instruction_1
 instruction_2

 instruction_n
 END
END

You should not jump into or out of blocks using the GOTO directive. The only
exception to this is if you jump out of all currently active blocks.

You can of course jump within the currently active block.

8 Directives

121

DROP

where name is any valid user-defined variable name.

The DROP directive erases individual user-defined variables. When a variable is
dropped, using the DROP directive, the executive routine continues as if the variable had
never existed.

If a variable exists as

• A command or global variable, and

• A local variable

then the DROP directive only erases the local variable and the other instance of the
variable becomes visible.

EXIT

where expression is an expression subject to Full Evaluation that evaluates to an
integer between 0 and 255 inclusive.

The EXIT directive causes an immediate exit from the current executive routine, and sets
return value(s) for the calling executive routine (the executive routine that control returns
to).

Note the following uses of the EXIT directive:

• Setting a return code in &CCOD

• Resetting &ECOD or &SCOD when an executive routine has recovered from an
error condition.

Refer to "Return Codes" on page 42 for further details of return codes.

� � �DROP name �

<<<<

� � �EXIT �

expression
EXEC
SESSION

 ASG-Manager Products Procedures Language

122

There are four versions of the directive:

• EXIT

This is the same as EXIT &ECOD.

• EXIT expression

&CCOD in the calling executive routine is set to the result of evaluating expression.
&ECOD and &SCOD are adjusted if necessary.

• EXIT expression EXEC

This is the same as EXIT expression.

• EXIT expression SESSION

&CCOD, &ECOD and &SCOD in the calling executive routine are all set to the
result of evaluating expression.

Example 1
EXIT 4&CCOD is set to 4 and &SCOD and &ECOD are adjusted if necessary.

Example 2
EXIT L20 SESSION

&SCOD, &ECOD and &CCOD are set to the value of the variable L20.

GLOBAL

where name is any valid user-defined variable name.

The GLOBAL directive declares global variables.

A global variable exists from its declaration to the end of the Manager Products session.

If a global variable of the specified name already exists then the declaration has no effect.

If a command variable of the specified name already exists then that variable becomes a
global variable.

� � �GLOBAL name �

<<<<

8 Directives

123

GOTO

where label is the name of a label.

The GOTO directive causes control to be passed to the directive following the specified
label. There are two types of GOTO:

• Unconditional

• Conditional.

A GOTO directive between the DO and END directives of a DO loop cancels all active
DO loops, unless the branch is to a label in the same loop. In that instance, all current DO
loops remain in operation. DO instruction blocks are no longer significant in this context,
such that a GOTO inside or outside an instruction block may branch to a label outside or
inside that block without cancelling the DO loop.

The value returned by the FDO(DLEVEL) function is unreliable if GOTO directives are
used to branch into or out of DO instruction blocks.

Examples
Here is an example of an unconditional GOTO:

GOTO STORE
-LABEL
.
.
-STORE

Here is an example of a conditional GOTO:

IF &G3 EQ 'READ' THEN GOTO INPUT
.
.
-INPUT

IF

� � �GOTO label �

<<<<

� � �IF condition THEN instruction

� �

�

ELSE instruction

 ASG-Manager Products Procedures Language

124

where:

condition is:

clause is:

expression is an expression subject to Full Evaluation

instruction is a single command or directive, or a block of instructions

The IF directive is used to conditionally execute instructions.

There are two types of construct.

• IF condition THEN instruction

If the condition is true then instruction is executed, otherwise the construct has no
effect.

• IF condition THEN instruction_1 ELSE instruction_2

If the condition is true then instruction_1 is executed, otherwise instruction_2 is
executed.

The ELSE keyword must start a new line. For example the instructions:

IF i=1 THEN GOTO L1
ELSE GOTO L2

are valid, but the instructions:

IF i=1 THEN GOTO L1 ELSE GOTO L2

are invalid.

� �clause

AND
<<<<<<<<<<<<<<<<<<<

OR

XOR

&

|

&&

clause

� �expression
 >=
 >
 <=
 ^=

 =

 EQ
 GE
 GT
 LE
 NE

expression

8 Directives

125

An ELSE keyword is always paired with an IF directive. When IF directives are nested
each ELSE keyword (if there are any) is paired with the most recent unpaired IF
directive. See example 4.

An expression may not include a combination of literal and string delimiters, for example
the following is invalid:

LITERAL #
IF X = #'# THEN DO

Use the following instead:

IF X = "'" THEN DO

There are two versions of each operator. For example, GE is the same as >= and XOR is
the same as &&.

Example 1
Here are some examples of conditions.

The condition:

reply EQ 1 AND &P1 EQ 1

is true if and only if both reply and &P1 are equal to 1.

The condition:

&P0 EQ 'A' XOR &P1 EQ 'B'

is true if and only if exactly one of the sub conditions is true.

Example 2
The instruction:

IF i=j THEN MPR MYEXEC;

causes executive routine MYEXEC to be called if and only if variable i has the same
value as variable j.

 ASG-Manager Products Procedures Language

126

Example 3
The instructions:

IF i=1 THEN GOTO L1
ELSE GOTO L2

cause control to pass to label L1 if i equals 1, otherwise control passes to label L2.

Example 4
When the instructions:

if i ne 2 then do
 if i=1 then do
 instruction_1
 end
 else do
 instruction_0
 end
end
else do
 instruction_2
end

are executed the result is one of the following:

• Instruction_1 is executed if i equals 1

• Instruction_2 is executed if i equals 2

• Otherwise instruction_0 is executed.

INTERPRET

where expression is an expression subject to Full Evaluation.

The INTERPRET directive is used to execute a dynamically constructed instruction.

The expressions are evaluated and concatenated to form an instruction, which must be
less than or equal to 255 characters long. The effect of INTERPRET is then as if this
instruction were inserted in place of the INTERPRET directive in the executive routine.

� � �INTERPRET expression �

<<<<<<<<<<

8 Directives

127

The valid instructions are:

• Assignment instructions

• Instructions beginning with the directives COMMAND, DROP, GLOBAL,
LOCAL, MPR, MPRE, NOP, PROFILE, RELEASE, SAY, VLIST, WRITEF

• Commands.

It is invalid for the instruction to begin with any other directive.

The assignment instructions can be variable assignments:

variable_name = expression

or they can be array assignments:

array_name1() = array_name2

Example 1

MPXX LITERAL=:
a = :MPR:
b = :MP-AID:
c = :LIST:
d = :TYPE ;:
TYPE = :USER:
INTERPRET a b c d

The expressions are evaluated and concatenated to give the instruction:

MPR MP-AID LIST TYPE;

and the effect is then as if this instruction were inserted into the executive routine in place
of the INTERPRET instruction. So the command:

MP-AID LIST USER;

is executed.

 ASG-Manager Products Procedures Language

128

Example 2

MPXX LITERAL=:
A = 3
INTERPRET :
GLOBAL TEMP:A

The expressions are evaluated and concatenated to give the instruction:

GLOBAL TEMP3

So a global variable TEMP3 is declared. Thus you can dynamically allocate variable
names.

Example 3
Here is routine GET_CLAUSE to print out all occurrences of a given clause in a given
member. &p0 is the member name and &p1 is the clause name.

mpxx literal=:
MPR :DACCESS MEMBER: &p0 :SUPPRESS ATTRIBUTES:;
interpret loop=COUNT_&p1
do for loop
 MPR :DRETRIEVE NEXT: &p1;
 interpret say &p1
end

For example, to print out all occurrences of the NOTE clause in the member DMC28,
enter:

GET_CLAUSE DMC28 NOTE;

ITERATE

The ITERATE directive causes an immediate branch to the start of the currently active
DO loop. If there is no currently active DO loop, ITERATE is invalid.

Note that a simple DO ... END block does not define a DO loop.

� � �ITERATE �

8 Directives

129

Example
The instructions:

do for 4
 i=fdo(dfor)
 if i=3 then iterate
 say i
end

produce the following output:

1
2
4

LEAVE

The LEAVE directive causes an immediate branch to the first instruction after the
currently active DO loop. If there is no currently active DO loop, LEAVE is invalid.

Note that a simple DO ... END block does not define a DO loop.

Example
The instructions:

do for 4
 i=fdo(dfor)
 if i=3 then leave
 say i
end

produce the following output:

1
2

� � �LEAVE �

 ASG-Manager Products Procedures Language

130

LITERAL

where character is any character except an operator (that is, & + - * / ! =) or a string
delimiter.

The LITERAL directive defines a literal delimiter. A string in literal delimiters is not
evaluated.

Lower case letters are not translated to upper case by the LITERAL directive, so for
example the instructions:

LITERAL q
LITERAL Q

define two literal delimiters, q and Q.

Here is an example of using literal delimiters:

LITERAL #
VALUE1 = ETWAS
VALUE2 = #ETWAS#

VALUE1 is set to the value of the variable ETWAS and VALUE2 is set to the string
ETWAS.

To cancel all literal delimiters, use:

LITERAL

Consider the expression AAA(9). If AAA is a variable then the expression evaluates to
the ninth element of AAA. If AAA is not a variable then it evaluates by convention to the
string AAA. To prevent this happening, you can put the expression in literal delimiters.

You are recommended to enclose all literal strings within literal delimiters, thus avoiding
any conflict with variable names and saving processing time.

� �LITERAL �

character

8 Directives

131

LOCAL

where name is any valid user-defined variable name.

The LOCAL directive declares local variables.

If a local variable of the specified name already exists, the declaration has no effect.

If an assignment is made to an undeclared variable then the variable is automatically
declared as a local variable. However, it is good programming practice to explicitly
declare all variables.

If a variable exists as:

• A local variable

• A global or command variable

then only the local variable is visible until the local variable is erased using the DROP
directive.

MESSAGE

where:

message-number is any integer below 65536

message-level is one of the following:

— I or i Informatory message

— W or w Warning message

— E or e Error message

— S or s Serious error message

— C or c Critical error message

variable-text is text for one of the variables in the message.

� �LOCAL name �

<<<<

� �MESSAGE message-number message-level variable-text �

 ASG-Manager Products Procedures Language

132

The MESSAGE directive allows you to output a Manager Products message.

variable-text can be specified 0 to 8 times, each text string containing up to 256
characters.

If message-number is not a valid Manager Products message number then the
following message is output:

DMnnnnnx MESSAGE NUMBER NOT RECOGNIZED

where:

nnnnn is the message number

x is the message level

Example 1
The directive:

MESSAGE 1292 W FILE1

produces the following output:

DM01292W FILE1 ENCODING UNSUCCESSFUL *******************

Note that you may specify a different message level to that normally issued with a
particular message by the Manager Products software. In the above example the message
is issued as a Warning (W) level message instead of the usual Error (E) level message.

Example 2
The directive:

MESSAGE 8814 E " 'USER-MEMBER' FILE2

produces following output:

DM08814E MP-AID USER-MEMBER FILE2 ALREADY PRESENT

Note that a null string must be specified as the first item of variable-text in this instance as
the standard ASG message format assumes that the first item of variable-text precedes the
first word of the message text.

8 Directives

133

MPR

where command is any Manager Products command.

The MPR directive identifies a Manager Products command.

The MPR directive is similar to the MPRE directive, except that Limited Evaluation takes
place instead of Full Evaluation.

Normally the procedures language first attempts to interpret an instruction as a directive,
then attempts to interpret it as a command.

If you use the MPR directive, the instruction is only interpreted as a command.

As previously stated the expression after the MPR directive is subject to Limited
Evaluation. For example:

MPR SET OUTPUT-EDIT &L9;

where &L9 should contain a value of ON or OFF.

It is essential that all Manager Product commands having the same name as a procedures
language directive are prefixed by MPR. Currently these commands are SET, DROP, and
TRANSFER.

ASG recommends that you precede all Manager Products commands with MPR as there
may in future releases be other directives with the same name as a Manager Product
command. This would cause an executive routine which successfully executed with an
old release to fail with a new release.

� � �MPR �

command ;
 .

 ASG-Manager Products Procedures Language

134

MPRE

where command is any Manager Products command.

The MPRE directive identifies a Manager Products command.

The MPRE directive is similar to the MPR directive, except that Full Evaluation takes
place instead of Limited Evaluation.

 Normally the procedures language first attempts to interpret an instruction as a directive,
then attempts to interpret it as a command.

 If you use the MPRE directive, the instruction is only interpreted as a command.

 As previously stated the expression after the MPRE directive is subject to Full
Evaluation. For example:

MPRE SENDF USER &LOGO(1,4)&TIME(1,2)&TIME(4,2);

where substrings of the system variables &LOGO and &TIME are used to build an
MP-AID USER-MEMBER name.

MPXX

where character is any valid literal delimiter.

The MPXX directive identifies an executive routine.

In an EXECUTIVE-ROUTINE dictionary member, MPXX must be the first directive of
the CONTENTS clause. In a USER-MEMBER, MPXX must be the first directive. In
either case MPXX must occupy the first four character positions of the first line.

You do not need MPXX in TRANSIENT members.

You can optionally specify a literal delimiter in the MPXX directive. If you do so then
any LITERAL directive is invalid.

� � �MPRE �

command ;
 .

� � �MPXX �

LITERAL=character DEFCMD

8 Directives

135

ASG recommends that, whenever possible, you use MPXX to specify the literal
delimiter, since this allows:

• Code optimization

• Improved error checking.

In corporate EXECUTIVE-ROUTINEs, the keyword DEFCMD may be used to specify
that any PRIMARY COMMANDs that have been renamed using the command:

SET PRIMARY-COMMAND _ _ TO _ _ ;

are to recognized in the EXECUTIVE-ROUTINE by their original names.

Example

mpxx literal=#

NOP

NOP is a dummy directive that has no effect. It can be used, for example, in the
INTERPRET directive.

PARSE

where:

expr is an expression

var-name is the name of a variable.

The PARSE ARG directive parses the input to an executive routine and assigns the words
to variables. The PARSE VALUE directive parses the result of evaluating an expression
and assigns the words to variables.

� � �NOP �

� � �PARSE ARG
 VALUE expr WITH

� �var-name �

<<<<<<<<

var-name ()

var-name
<<<<<<<<

 ASG-Manager Products Procedures Language

136

If there are more words than there are variables, the extra words are discarded. If there are
fewer words than there are variables, the extra variables are set to null.

If the last name in the list of variables is of the form:

var-name()

then all remaining words are assigned to elements of this variable, starting from element
1. All other elements of the variable are set to null.

Delimiters are not removed when words are assigned. This is different from the way
Parameter Variables are assigned. For example, if you invoke the executive routine
MYEXEC as follows:

MYEXEC "i j";

the instructions:

PARSE ARG A()
VLIST ARRAY A
VLIST &P

produce the following output:

A (L) 00001 '"i j"'
&P0 'i j'

Example 1
The instructions:

mpxx literal=#
parseoption 4
s = #11"22 3#
parse value s with a()
vlist array a

produce the following output:
A (L) 00001 '11"22'
A (L) 00002 '3'

8 Directives

137

Example 2
Invoking the executive routine MYEXEC as follows:

MYEXEC abc d ef;

then the instructions:

PARSE ARG FIRST(2) SECOND
VLIST LOCAL

produces the following output:

FIRST (L) 00002 'abc'
SECOND (L) 00001 'd'

The last word is discarded.

PARSEOPTION

The PARSEOPTION directive sets the parsing method. The new parsing method applies
for the rest of the current executive routine, or until the PARSEOPTION directive is used
again.

Refer to "Parsing" on page 18 for further details of parsing.

PROFILE

where name is any valid user-defined variable name

The PROFILE directive declares profile variables.

� �PARSEOPTION � 1
 2
 3
 4

� � �PROFILE name �

<<<<

 ASG-Manager Products Procedures Language

138

When a PROFILE directive is encountered, each variable name is placed in the index of
profile, global and command variables. Variables placed in the profile/global/command
index by means of the PROFILE directive are accessible throughout the time a
ControlManager user is logged on. If the PROFILE directive refers to a variable name
which is already in the index, it has no effect on that variable other than to identify or
re-identify it as a profile variable.

Profile variables are not lost at LOGOFF but are saved in a Variable Pool member on the
MP-AID at LOGOFF provided that:

• The MP-AID is updateable

• The user is logged on under an exclusive logon profile or is the Systems
Administrator.

They are then automatically retrieved from the MP-AID and restored at the next LOGON
by this user.

RELEASE
The RELEASE command erases a selection of variables of a particular type. Use the
RELEASE directive to erase:

• All variables of a particular type

• A selection of variables of a particular type

It is good programming practice to erase variables when you have finished with them.

The variable-type keywords have the following meanings:

Keyword Meaning

COMMAND User-defined command variables

GLOBAL User-defined global variables

LOCAL User-defined local variables

PROFILE User-defined profile variables

&G ASG-defined global variables

&I Installation variables

&L ASG-defined local variables

&P Parameter variables

8 Directives

139

Local and parameter variables are local to an executive routine. That is, there may be
other occurrences of any variable in higher-level executive routines. When a local or
parameter variable is erased it is as if the most recent occurrence of that variable had
never existed.

Variables of any other type are global. That is, any variable is the unique occurrence of
that variable. When such a variable is erased it is as if that variable had never existed.

Erasing All Variables of a Particular Type
By including any of the variable-type keywords you can erase all variables of those types.
For example, to erase all global variables (user-defined and ASG-defined), enter:

release &g global

Erasing a Selection of Variables of a Particular Type
By including any of the following variable-type keywords:

• COMMAND

• GLOBAL

• LOCAL

• PROFILE

you can erase:

• Those variables whose names fall within a given range. (Use the FROM ... TO
keywords.)

• Those variables whose names start with a given string. (Use the ONLY keyword.)

To erase all user-defined global or command variables whose names fall within the range
a to d inclusive, enter:

release global command from a to d

To erase all user-defined global variables whose names begin with the string 'MDG_',
enter:

release global only MDG_

 ASG-Manager Products Procedures Language

140

RELEASE Syntax

where str is a string of up to 25 characters that is a user-defined variable name.

RETAIN

The RETAIN directive causes an executive routine to be retained in virtual storage when
it terminates. In the absence of RETAIN the executive routine is deleted from virtual
storage.

Note that RETAIN is only effective if the SET EXECUTIVE-RETENTION ON
command has been issued.

RETURN

The RETURN directive causes control to pass back to the most recent active CALL.

For full details of the RETURN directive, refer to the CALL directive.

� �RELEASE
GLOBAL
LOCAL
PROFILE
 &G

COMMAND

 &I
 &L
 &P

<<<<<<<<<<<<<

GLOBAL
LOCAL
PROFILE

COMMAND
<<<<<<<<<<<<<

FROM str TO str
ONLY str

� � �RETAIN �

� � �RETURN �

8 Directives

141

SAY

where expression is an expression subject to Full Evaluation.

The SAY directive is similar to the WRITEL directive, except that Full Evaluation takes
place instead of Limited Evaluation.

The combined length of the evaluated expressions cannot exceed 598 characters. The
maximum evaluated length of individual expressions cannot exceed 255 characters.

If you are using the Procedures Language facility in an interactive environment then
setting BLANK-LINE-DISPLAY to ON causes the SAY directive to output a blank line
if SAY is specified without any following text or if the expressions are evaluated to null
strings or blanks.

SET

where:

variable-name is the name of a variable

expression is an expression subject to Full Evaluation.

The SET directive assigns the result of an evaluated expression to the specified variable.

An alternate way of assigning values is to use the = operator. For example:

i = i+1

Examples

set i i+1
SET &G2 ’17 JULY 1992’
SET &L20 LENGTH(PASSWORD)

� � �SAY �

expression
<<<<<<<<<<

� � �SET variable-name expression �

 ASG-Manager Products Procedures Language

142

SIGNAL

where result-code is an expression that evaluates to any integer between 0 and 255
inclusive. It defaults to 8.

The SIGNAL directive allows you to divert control within an executive routine when an
error occurs.

There are four cases.

• SIGNAL ON ERROR result-code

This turns on branching to the label -ERROR when a Manager Products command
or executive routine returns a non-zero return code. Branching only occurs when
this non-zero return code is greater than or equal to the result of evaluating
result-code.

Manager Products commands return a return code of 0, 4 or 8. Executive routines
return a return code between 0 and 255.

• SIGNAL OFF ERROR

This turns off branching to the label -ERROR.

• SIGNAL ON SYNTAX

This turns on branching to the label -SYNTAX when a directive fails.

• SIGNAL OFF SYNTAX

This turns off branching to the label -SYNTAX.

SIGNAL ON ERROR and SIGNAL ON SYNTAX can be active concurrently.

ASG recommends that the first instruction following the -ERROR label is SIGNAL OFF
ERROR and the first instruction following the -SYNTAX label is SIGNAL OFF
SYNTAX. This avoids the possibility of an infinite loop if an error occurs while
processing the instructions following -SYNTAX or -ERROR.

� � �SIGNAL �ON ERROR
result-code

SYNTAX

OFF ERROR
SYNTAX

8 Directives

143

STACK

where system-variable-name is the name of any system variable except for the
following:

&COLO, &CURL, &ENAM, &LINC, &LINO, and &PNUM

The STACK directive allows you to preserve old values of system variables.

If stacking is switched ON for particular system variables, then all values subsequently
assigned to those system variables are preserved until stacking is switched off or the
current top level executive routine has terminated, whichever occurs first.

Stacking is OFF by default.

Normally, with stacking switched OFF, the previous value assigned to a system variable
is replaced with a new value, whenever a new value is assigned by the Manager Products
software. However, with stacking switched ON, an array is automatically generated by
the Manager Products software, bearing the name of the system variable. On each
occasion that a new value is assigned by the Manager Products software to the system
variable, the new value is stored in the next unused element of the array so that all
previous values are preserved.

The following example illustrates the effect of stacking a system variable. When a system
variable, for example &MSNO, is first assigned a value, the value is assigned to element
number one in array &MSNO, and may be referenced within an executive routine as
&MSNO or &MSNO(1).

If stacking is OFF when the next value is assigned by the Manager Products software to
system variable &MSNO, then that value overwrites the existing value in &MSNO(1).

However, if stacking is switched ON when the next value is assigned by the Manager
Products software to system variable &MSNO, then that value is stored in the next
unused element in array &MSNO which in this case is element 2 and so on. Element 2 in
array &MSNO can be referenced as &MSNO(2).

When stacking is switched from ON to OFF for a particular system variable, any array
values set up for that system variable are deleted except for the highest (that is, the most
recent), which is reassigned to array element 1, and may be referenced within the
executive routine as, for example, &MSNO or &MSNO(1).

STACK OFF ALL switches off stacking for all stacked system variables.

� � �STACK �ON system-variable-name

OFF

<<<<<<<<<<<<<<<<<<<<

system-variable-name
<<<<<<<<<<<<<<<<<<<<

ALL

 ASG-Manager Products Procedures Language

144

TRACE

where options is one of these:

The TRACE directive allows you to display selected lines as an executive routine runs.
Use it to debug executive routines.

TRACE RESULTS is equivalent to TRACE ALL RESULTS, when no other TRACE
options are in force.

When an instruction is displayed it is prefixed by the line number. When a result is
displayed (enclosed in single quotes) it is prefixed by >>>.

The TRACE directive is cumulative. For example:

TRACE COMMANDS
TRACE RESULTS

is equivalent to:

TRACE COMMANDS RESULTS

The effect of a TRACE instruction is limited to the current executive routine.

ALL All lines are displayed as they are executed (equal to COMMAND)

ASSIGNS Only assignment and DROP, PARSE, and RELEASE instructions are
displayed

COMMAND All lines are displayed as they are executed (equal to ALL)

COMMANDS Only commands are displayed

CPUTIME Displays CPU usage by command on a cumulative basis

LOGIC Only IF, DO, END, ITERATE, LEAVE, CALL, RETURN, EXIT, and
GOTO instructions, and labels are displayed

OFF Tracing is turned off

ON Is the same as the ALL option

RESULTS Displays the results of all expression evaluations for instructions being
displayed by other options

� � �TRACE �OFF

options
<<<<<<<

8 Directives

145

When output has been switched to an alternative or additional dataset (by means of the
SWITCH OUTPUT command), TRACE output is sent only to the alternative dataset and
not to the Primary Output Device.

A plus symbol (+) following the line number indicates that the displayed line is broken
into two or more lines in the original executive routine.

For details on obtaining trace information without embedding TRACE directives in each
routine, see the SET TRACE command.

Example
The instructions:

TRACE RESULTS
first = 'THIS IS A'
second = MESSAGE
SAY first second

produce the following output:

LINE 2 first = 'THIS IS A'
>>> 'THIS IS A'
LINE 3 second = MESSAGE
>>> 'MESSAGE'
LINE 4 SAY first second
>>> 'THIS IS A'
>>> 'MESSAGE'
THIS IS A MESSAGE

TRANSFER

where:

exec-name is the name of a user or corporate executive routine

parameter is a parameter.

The TRANSFER directive:

• Terminates the current executive routine and all higher level executive routines

• Calls the named executive routine.

� � �TRANSFER exec-name �

parameter
<<<<<<<<<

 ASG-Manager Products Procedures Language

146

When the called executive routine terminates, control passes to command level. (Contrast
this with a normal call of an executive routine, where when the called routine terminates,
control passes back to the calling routine.)

The combined length of all the evaluated parameters cannot exceed 3999 characters. The
parameters are made available to the executive routine in &P variables.

VLIST
The VLIST directive lists a selection of variables. It is especially useful when you are
developing or debugging executive routines.

You can list:

• Particular variables

• All variables of a particular type

• Selected variables of a particular type.

The variable-type keywords have the following meanings:

When you list variables of a particular type:

• For ASG-defined variables (except system variables), all non-null variables are
listed

• For user-defined variables, all variables are listed

• For system variables, all but the following variables are listed:

&BUFN, &COLO, &CURL, &ENAM, &LINC, &LINO and &PNUM.

Keyword Meaning

COMMAND User-defined command variables

GLOBAL User-defined global variables

LOCAL User-defined local variables

PROFILE User-defined profile variables

&G ASG-defined global variables

&I Installation variables

&L ASG-defined local variables

&SYS System variables

&P Parameter variables

8 Directives

147

Each line of the VLIST output has the following format:

• Variable name

• For user-defined variables, the variable type

• For arrays, the element number and the element’s value enclosed in quotes

• For simple variables, the variable’s value enclosed in quotes.

When output has been switched to an alternative or additional destination (by means of
the SWITCH OUTPUT command), VLIST output is sent only to the alternative
destination and not to the Primary Output Device.

Listing Particular Variables
To list particular variables use the ARRAY keyword. For example, to list all elements of
the user-defined variable DB2_USERS, enter:

vlist array DB2_USERS

Listing All Variables of a Particular Type
By including any of the variable-type keywords you can list all variables of those types.
For example, to list all global variables (user-defined or ASG-defined), enter:

vlist &g global

Listing a Selection of Variables of a Particular Type
By including any of the following variable-type keywords:

• COMMAND

• GLOBAL

• LOCAL

• PROFILE

you can list:

• Those variables whose names fall within a given range. (Use the FROM ... TO
keywords.)

• Those variables whose names start with a given string. (Use the ONLY keyword.)

To list all user-defined global or command variables whose names fall within the range
’a’ to ’d’ inclusive, enter:

vlist global command from a to d

Each line of the VLIST output has the following format:

• Variable name

• For user-defined variables, the variable type

• For arrays, the element number and the element’s value enclosed in quotes

• For simple variables, the variable’s value enclosed in quotes.

When output has been switched to an alternative or additional destination (by means of
the SWITCH OUTPUT command), VLIST output is sent only to the alternative
destination and not to the Primary Output Device.

Listing Particular Variables
To list particular variables use the ARRAY keyword. For example, to list all elements of
the user-defined variable DB2_USERS, enter:

vlist array DB2_USERS

Listing All Variables of a Particular Type
By including any of the variable-type keywords you can list all variables of those types.
For example, to list all global variables (user-defined or ASG-defined), enter:

vlist &g global

Listing a Selection of Variables of a Particular Type
By including any of the following variable-type keywords:

• COMMAND

• GLOBAL

• LOCAL

• PROFILE

you can list:

• Those variables whose names fall within a given range. (Use the FROM ... TO
keywords.)

• Those variables whose names start with a given string. (Use the ONLY keyword.)

To list all user-defined global or command variables whose names fall within the range
’a’ to ’d’ inclusive, enter:

vlist global command from a to d

 ASG-Manager Products Procedures Language

148

To list all user-defined global variables whose names begin with the string MDG_, enter:

vlist global only MDG_

Examples
The instructions:

mpxx literal=:
&L12 = :YELLOW:
BOX(3) = :CLOSED:
BOX(6) = :OPEN:
GLOBAL BOOK CASE
BOOK = :EMPTY:

declare and initialize some variables, and the instruction:

VLIST &L GLOBAL ARRAY BOX

produces the following output:

&L12 'YELLOW'
BOOK (G) 00001 'EMPTY'
CASE (G) INDEX ENTRY ONLY
BOX (L) 00003 'CLOSED'
BOX (L) 00006 'OPEN'

The instructions:

STACK ON &MSNO
MPR SET OUTPUT-EDIT OFF ;
EDIT ENTITY ;
VLIST ARRAY &MSNO

produce the following output:

DM08100I SET PROCESSING SUCCESSFUL
DM08816E MP-AID USER MEMBER ENTITY NOT PRESENT
&MSNO (S) 00001 '8100'
&MSNO (S) 00002 '8816'

8 Directives

149

VLIST Syntax

where:

selection is:

str is a string of up to 25 characters that is a user-defined variable name.

variable-name is the name of any user-defined or system variable, except for the
following system variables:

&BUFN, &COLO, &CURL, &ENAM, &LINC, &LINO, &PNUM.

WRITEF

where expression is an expression subject to Full Evaluation.

The WRITEF directive outputs text to a variety of logical devices.

� � �VLIST �selection

ARRAY variable-name
<<<<<<<<<<<

ARRAY variable-name
<<<<<<<<<<<

� �RELEASE
GLOBAL
LOCAL
PROFILE
 &G

COMMAND

 &I
 &L
 &P

<<<<<<<<<<<<<

GLOBAL
LOCAL
PROFILE

COMMAND
<<<<<<<<<<<<<

FROM str TO str
ONLY str

� � �WRITEF �

expression
<<<<<<<<<<<

 ASG-Manager Products Procedures Language

150

You can use the WRITEF directive in a similar way to the SAY directive. However,
whereas SAY outputs text to the primary/secondary output device only, WRITEF can
output text to a destination specified by a previous SENDF command. This destination
can be:

• A USER-MEMBER on the MP-AID

• A sequential dataset

• A partitioned dataset

and/or the primary/secondary output device. If no destination has been previously
specified, WRITEF will output to the primary/secondary output device only.

The maximum length of data of an expression after evaluation is 32760 characters,
depending on the output destination.

The maximum length of data that can be output to a USER-MEMBER on the MP-AID is
255 bytes.

The maximum length of data that can be written to an external dataset is the smallest
value of:

• The logical record length of the dataset, for fixed length records; or

• The logical record length of the dataset, minus four bytes, for variable length
records; or

• 32760

If the WRITEF directive is followed by expressions whose combined evaluated length
exceeds the maximum size for the destination being written to, the executive routine
terminates with an error message (unless the SIGNAL ON SYNTAX directive is active).

A WRITEF directive which follows a CLOSEF directive generates output to the
destination specified by the last active SENDF command.

8 Directives

151

WRITEL

where expression is an expression subject to Limited Evaluation.

The WRITEL directive outputs text to the Primary Output Device.

The WRITEL directive is similar to the SAY directive except that Limited Evaluation
takes place instead of Full Evaluation.

There is a restriction of 598 characters both on the number of text characters (including
imbedded blanks) which can be specified with a single WRITEL directive and on the
output text generated by a single WRITEL directive.

If you are using the Procedures Language facility in an interactive environment then
setting BLANK-LINE-DISPLAY to ON will cause the WRITEL directive to output a
blank line if WRITEL is specified without any following text or if the text is evaluated to
a null string or blanks.

Example 1

WRITEL DICTIONARY &DICT NOW OPEN

outputs the following text, if &DICT is set to DEMO:

DICTIONARY DEMO NOW OPEN

Example 2

WRITEL &L1+&L4||12345||ABCDE

produces the following output, if &L1 is set to 5 and &L4 is set to 7:

5+712345ABCDE

� � �WRITEL �

expression
<<<<<<<<<<<

 ASG-Manager Products Procedures Language

152

153

9 9Functions

This chapter contains specifications, in alphabetical order, of all functions.

ABBREV . 155

ARG . 156

ARRAYHI . 157

ARRAYLO. 157

BIN . 158

CENTER . 158

CLIENTI . 158

CLIENTN. 159

CLIENTU. 159

COPIES . 160

DB2TYPE. 160

DIVCAPT. 160

DIVOBJN. 161

DIVOBJT. 161

EDDATE . 161

EDTIME. 163

EXTRACT . 163

FDO . 166

GETSVRM. 167

GETTOKEN . 168

GETUDSN . 168

HEX . 169

INSERT . 169

LASTPOS. 170

LEFT . 170

 ASG-Manager Products Procedures Language

154

LENGTH . 170

LOWER . 171

MAX . 172

MEMTYPE . 172

MIN. 173

MPRAID . 173

MPRCMPW. 174

MPRDDPW . 174

MPRSU. 174

MPRUCLS . 174

MPRUDSN. 175

NDATE. 175

NTIME . 176

OVERLAY. 177

PACK . 177

PARSABLE . 178

POS . 178

PTIME . 178

REDUCE . 179

REPSTR. 179

REVERSE . 180

RIGHT . 180

ROOT . 180

SEARCH . 181

SERVERN . 182

STIME . 182

STRIP . 182

SUBSTRING . 184

SUBTASK . 185

SUBTENV . 186

TRANSLAT. 187

TRUNCATE . 187

TYPE . 188

9 Functions

155

UPPER . 189

VALUE. 190

WORD . 191

WORDINDX . 191

WORDLEN . 191

WORDS . 192

ABBREV

The ABBREV function tests whether strg is a substring of a second string string.

• ABBREV returns 1 if strg is equal to the leading characters of string and strg is
not shorter than a minimum specified length.

• ABBREV returns 0 if either condition is not true.

• strg defaults to null.

• length defaults to the length of strg.

Examples

ABBREV('Heading','Head') gives 1
ABBREV('HEADING','Head') gives 0
ABBREV('HEADING','HEA',4) gives 0
ABBREV('HEADING','') gives 1
ABBREV('HEADING','',1) gives 0

The function is particularly useful in identifying truncated forms of keywords supplied by
the user as input parameters to an executive routine, for example:

LITERAL #
IF &P0 EQ '' THEN GOTO ERROR1
IF ABBREV(SELECT,&P0,1) EQ 1 THEN GOTO SELECT
IF ABBREV(#MOD-LEVEL#,&P0,1) EQ 1 THEN GOTO MODIFY
IF ABBREV(VERIFY,&P0,3) EQ 1 THEN GOTO VERIFY

� � �ABBREV(string �

,strg
,length

)

 ASG-Manager Products Procedures Language

156

ARG

The ARG function returns the value of the specified ASG-defined variable.

For example, if variable-number is 5 and variable-type is G then the value of
global variable &G5 is returned.

If variable-number is omitted the value returned by the function is the highest
variable number that has a non-null value assigned to it, plus 1.

variable-number, if specified, may be any number from 0 up to 99 (the maximum
number permitted for ASG-defined variables).

variable-type is one of the following:

G representing &G variables
I representing &I variables
L representing &L variables
P representing &P variables

If variable-type is omitted P is assumed.

Examples
In the following example, &P0 to &P4 have been set up, including &P2 set to ABCDE:

SAY ARG(2) gives ABCDE
SAY ARG(,P) gives 5

The ARG function makes it possible to loop through a sequence of ASG-defined
variables without referring to each by name, for example:

set N 0 /* number of variable
set count arg() /* get number of &p variables
if count eq 0 then exit /* exit if no &p vars
-loop
if arg(N,) eq avalue then do
 other instructions
end
set N N+1 /* increment for next variable
if N lt count then goto loop /* exit if there are no more
exit

� � �ARG(�

variable-number ,variable-type
)

9 Functions

157

ARRAYHI

The ARRAYHI function evaluates the specified expression, which must be a
user-defined variable name. If the variable name is found and data has already been
assigned to it, the highest array number set up is returned.

If the variable name is not found in any user variable index, the value returned by
ARRAYHI is -1.

If the variable name is found but no data has been assigned to it, the value returned is
zero.

Example

LITERAL #
FRED(6) = BLOB
FRED(10) = LUMP
SAY ARRAYHI(#FRED#)

gives a value of 10.

ARRAYLO

The ARRAYLO function evaluates the specified expression, which must be a valid
user-defined variable name. If the variable name is found and data has already been
assigned to it, the lowest array number set up is returned.

If the variable name is not found in any user variable index, the value returned by
ARRAYHI is -1.

If the variable name is found but no data has been assigned to it, the value returned is
zero.

Example

LITERAL #
FRED(6) = BLOB
FRED(10) = LUMP
SAY ARRAYLO(#FRED#)

� � �ARRAYHI(expression) �

� � �ARRAYLO(expression) �

 ASG-Manager Products Procedures Language

158

gives a value of 6.

BIN

where integer is a value between -999999 and +999999.

The BIN function returns a word containing the signed binary representation of the
numeric argument. The purpose of this function is to enable binary fields to be included
within WRITEF directive output. No computational capability is provided.

Examples

BIN(1000) gives '000003E8'
BIN(32767) gives '00007FFF'
BIN(-1) gives 'FFFFFFFF'

CENTER

The CENTER function returns a string that is centered in a field of length length. pad
characters are added as necessary to make up the length. The default pad character is
blank. If string is longer than length it is truncated at both ends to fit. If an odd number of
characters are truncated or added, the right end loses or gains one more character than the
left end.

Examples

CENTER(MID,7) gives ' MID '
CENTER(MID,8,'*') gives '**MID***'
CENTER('1st cent pos',8) gives 't cent p'
CENTRE('2nd cent pos',7) gives 'd cent '

CLIENTI

� �BIN(integer) �

� � �CENTER(�

CENTRE(
string,length)

,pad

� � �CLIENTI()

�

9 Functions

159

The CLIENTI function returns the current MPSF client identity. This is an alphanumeric
string of up to 8 characters.2.5

Example

clienti()

CLIENTN

The CLIENTN function returns the current MPSF client conversation number in the
range of 1 to 9,999. 2.5

-1 is returned if the function is issued from a non-MPSF environment.

-3 is returned if any argument is passed.

Example

clientn()

CLIENTU

For MPSF OS/390 clients only, the CLIENTU function returns the client RACF/ACF2
user ID under which the client job or online session is being executed.2510

-1 is returned if the caller is not executing as an MPSF OS/390 client.

-3 is returned if any argument is passed.

Example

clientu()

� � �CLIENTN()

�

� � �CLIENTU()

�

 ASG-Manager Products Procedures Language

160

COPIES

The COPIES function returns number concatenated copies of string. number must be
equal to or greater than 0.

Examples

COPIES(MANY,3) gives 'MANYMANYMANY'
COPIES(MANY,0) gives ''

DB2TYPE
The DB2TYPE function is used internally by Manager Products. It is intended in future
to make it available as part of the procedures language. At present, however, DB2TYPE
is a reserved name.

If you want to use a variable DB2TYPE then in order for it to be correctly interpreted as a
variable it must be enclosed in delimiters.

DIVCAPT

where request is one of these: 2510

a to return the current attempted CAPTURE count

r to return the current actual CAPTURE count

i to return the current CAPTURE interval in seconds

The DIVCAPT function returns information about a CAPTURE session for a DIV
repository or MPAID resource defined and opened in shared mode under MPSF.

-1 is returned if a CAPTURE session is not active for the specified resource.

-2 is returned if the specified resource is not found.

-3 is returned if the function is issued from a non-MPSF environment.

-4 is returned if invalid or incorrect arguments are passed.

� � �COPIES(string,number) �

� � �DIVCAPT(resource,request) �

9 Functions

161

Examples

divcapt(prod,a)
divcapt(admin,r)
divcapt(mpaid,i)

DIVOBJN

When issued by an MPSF RPT subtask, the DIVOBJN function returns the name of the
owned DIV object.

-1 is returned if no DIV object is owned.

Example

divobjn()

DIVOBJT

When issued by an MPSF RPT subtask, the DIVOBJT function returns the type of the
owned DIV object. 2.5

M is returned if the DIV object is an MPAID.

R is returned if the DIV object is a repository.

-1 is returned if no DIV object is owned.

Example

divobjt()

EDDATE

� � �DIVOBJN()

�

� � �DIVOBJT()

�

� � �EDDATEx(expression) �

 ASG-Manager Products Procedures Language

162

where x is I or O representing input and output format respectively.

The EDDATE functions are used to reformat the ASG standard date format into your
installations standard format, as defined in the DCUST installation macro.

The standard ASG date format is YYYYDDD, where:

• Y represents a year character

• D represents a day character.

For example, the 3rd February 1989 would be represented as 1989034.

The EDDATEI function gives the date for input to a Manager Products repository or
command.

The EDDATEO function gives the date as output by a Manager Products command.

Example

literal #
eddatei(#1991365#) gives 31/DEC/1991

if you are using the default date format settings as supplied, and user definable via
operands of the DCUST macro.

9 Functions

163

EDTIME

where n is I or O representing input and output format respectively.

The EDTIME functions are used to reformat the ASG standard time format into your
installations standard format, as defined in the DCUST installation macro.

The standard ASG time format is HHMMSSTH where:

• H represents an hour character

• M represents a minute character

• S represents a second character

• TH represents two thousands of a second characters.

For example, 4 hours, 26 minutes, 37 seconds and 352 thousands of a second would be
represented as 04263735.

The EDTIMEI function gives the time for input to a Manager Products repository.

The EDTIMEO function gives the time for output from a Manager Products repository

Example

literal #
edtimei(#11200501#) gives 11.20.05

if you are using the default time format settings as supplied, and user definable via
operands of the DCUST macro.

EXTRACT

where keyword is one of the keywords listed below.

The EXTRACT function returns information about your Manager Products environment.

� � �EDTIMEn(expression) �

� � �EXTRACT(keyword) �

 ASG-Manager Products Procedures Language

164

The valid keywords, and the information returned by EXTRACT in each case, are shown
in the table below.

Keyword Information Returned

CMD Most recent command-line data as entered

CMRREL Current ControlManager version/release number

CPUTIME Cumulative CPU time used, in seconds

DFREE Current Data Entries dataset free block count

DMRREL Current DataManager version/release number

DSN Physical dataset name (if allocated)

DSRREL Current DesignManager version/release number

DYRREL Current DictionaryManager version/release number

ELEVEL Level of the current executive routine

ENAME Name of the current executive routine

ETYPE Type of current executive routine (M,C,U or T)

EYRREL Current DictionaryManager version/release number

IFREE Current Index dataset free block count

LCOFF Offset down the ControlManager buffer where linear command was
entered

LFREE Current free log space in kilobytes

MFREE Current MP-AID dataset free block count

MMRREL Current MethodManager version/release number

MPUPDC Current primary MPAID update count 2.5

NOPRINT 1 when NOPRINT exec-name is specified, otherwise 0

PAGELEN Current MPR page length

PROFID Current profile identifier

REPUPDC Current repository update count, -1 if not open 2.5

SFREE Current Source dataset free block count

SRBTIME Cumulative Service Request Block time, in seconds

VERB Most recent command verb entered, unabbreviated

9 Functions

165

The CPUTIME keyword is only available in MVS and VM environments. The function
call:

EXTRACT(CPUTIME,C)

returns the CPU time used since the start of the highest level executive routine.

The SRBTIME keyword is only available in MVS environments.

DSN Keyword
The DSN keyword allows writers of executive routines to determine if a particular
ddname has been allocated and, if it has, the physical dataset name allocated. The
specification is:

EXTRACT(DSN,ddname)

where ddname is up to 8 characters.

If the dataset has not been allocated a null string is returned. If the dataset has been
allocated the following is returned:

• Under MVS, a name of up to 44 characters

• Under VM/CMS, an 18 character string consisting of the file name-type-mode

For a concatenated dataset, only the first dataset name in the concatenation is returned.

Primary Command Keyword
This keyword allows the EXTRACT function to return details about a passed primary
command verb, reporting availability and current name.

The syntax of this option is as follows:

EXTRACT(PRIMARY,command)

where command is a Manager Products command verb as supplied by ASG.

Returned values are:

0 string Command available / current command string

1 string Command disabled / current command string

2 Passed command ambiguous

3 Passed command not found in command table

 ASG-Manager Products Procedures Language

166

Examples

Assuming the Manager Products COPY command has been renamed as DUPLICATE
then:

EXTRACT(PRIMARY,COPY)

returns

0DUPLICATE.

Assuming the Manager Products UPDATE command has been disabled then:

EXTRACT(PRIMARY,UPDATE)

returns

1UPDATE.

LCOFF Keyword
This keyword allows a currently executing linear command to determine the offset down
the ControlManager buffer where the linear command was entered. The buffer is
considered to consist of the user data plus the top and end of data records.

Where not issued from a linear command, -1 is returned.

FDO

where keyword is one of the keywords listed below.

The FDO function returns information about currently active blocks.

These are the valid keywords and the information returned by FDO in each case:

If there are no active blocks FDO returns zero.

Keyword Information Returned

DARRAY The current array element number, if the currently active block is a DO
array-name() block, otherwise zero.

DFOR The number of times the currently active block has been executed. (1
during the first execution, 2 during the second execution, and so on.)

DLEVEL The number of currently active blocks.

� � �FDO(keyword) �

9 Functions

167

Example
The instructions:

if 1 = 1 then do
 say fdo(dlevel)
 if 1 = 1 then do
 say fdo(dlevel)
 end
end

produce the following output:

1
2

GETSVRM

where msg-no must be an integer in the range 1 to 50. 2.5

The GETSVRM function returns the text of message strings which can be defined by the
System Administrator for access by all MPSF clients. Each returned string can be up to
255 characters in length.

A null string is retuned when no message exists.

-1 is returned if the function is issued from a non-MPSF environment.

-3 is returned if an invalid argument is passed.

Examples

getsvrm(1)
getsvrm(50)

� � �GETSVRM(msg-no) �

 ASG-Manager Products Procedures Language

168

GETTOKEN

When issued by an MPSF client, the GETTOKEN function returns an integer in the range
1 to 2,147,483,647. The returned integer is always unique across all clients for the
duration of MPSF. You can use this function to generate a unique resource name, such as
MPAID user member name. 2.5

-1 is returned if the function is issued from a non-MPSF environment.

Example

gettoken()

GETUDSN

The GETUDSN function returns the UDS table name of a DIV repository defined and
opened as a shared repository under MPSF.

-1 is returned if the specified repository is not defined and opened as a shared repository.

-2 is returned if invalid or incorrect arguments are passed.

-3 is returned if the function is issued from a non-MPSF environment.2510

Example

getudsn(admin)

� � �GETTOKEN() �

� � �

�GETUDSN(repository)

9 Functions

169

HEX

The HEX function returns a string containing the hexadecimal representation of the
passed argument. The maximum length of the argument is 127 characters. 2510

-1 is returned if the passed argument is a null string

-2 is returned if invalid or incorrect arguments are passed.

-3 is returned if the passed argument contains more than 127 characters.

Examples

hex(ABCD) gives C1C2C3C4
hex(12345) gives F1F2F3F4F5

INSERT

where options is:

The INSERT function inserts the string new into the string target after the nth
character. The string new is padded to length with the character specified by pad, or
truncated if length is less than the length of new. If n is set to the default of zero then the
string new is inserted before the string target. length defaults to the length of new.
The default pad character is a blank.

Examples

INSERT('','newgap',3) gives 'new gap'
INSERT('tst','gap',5,6) gives 'gap tst '
INSERT('tst','gap',5,6,'+') gives 'gap++tst+++'
INSERT('tst','gap') gives 'tstgap'
INSERT('tst','gap',,5,'-') gives 'tst--gap'

� � �

�HEX(string)

� � �INSERT(new,target options) �

� �

�

 ,
 n ,

 length ,pad

 ASG-Manager Products Procedures Language

170

LASTPOS

The LASTPOS function returns the position of the last occurrence of one string, page, in
another string, book. Searching begins at character position start and scans from right
to left. By default the search starts at the last character of book. 0 is returned if page is
not found in book.

Examples

LASTPOS('','tes tst ring') gives 8
LASTPOS('','teststring') gives 0
LASTPOS('','tes tst ring',7) gives 4

LEFT

The LEFT function returns a string of length length containing the leftmost length
characters of string. The string returned is padded with pad characters on the right as
needed. If length is zero the null string is returned.

pad defaults to blank. length must be zero or a positive integer.

Examples

LEFT('links',8,'.') gives 'links...'
LEFT('lagauche',7) gives 'lagauch'

LENGTH
There are two versions of the length function:

• LENGTH function

• Implicit length function.

ASG recommends that you use the LENGTH function. The implicit version is retained
for upwards compatibility only.

The two versions are described below.

� � �LASTPOS(page,book �)
,start

� � �LEFT(string,length �)
,pad

9 Functions

171

LENGTH function

The LENGTH function returns the length of string string.

Example

literal #
reply = #ABCD#
SAY LENGTH(reply) gives 4
SAY LENGTH(reply)+LENGTH(reply) gives 8

Implicit Length Function

The LENGTH function returns the length of string string.

Example

literal #
reply = #ABCD#
SAY LENGTH reply gives 4

LOWER

where string is a string.

The LOWER function returns the string string with all characters translated to lower
case.

Examples

literal #
lower(#A#) gives a
lower(#abCDe#) gives abcde
lower(#123#) gives 123

� � �LENGTH(string) �

� � �LENGTH string �
� � �LOWER(string) �

 ASG-Manager Products Procedures Language

172

MAX

The MAX function returns the largest value from the list of passed arguments.

A minimum of two arguments must be passed, but there is no maximum number of
arguments.

Example

MAX(100,300,500,1000) gives 1000

MEMTYPE

The MEMTYPE functions take a single parameter, a member name, and return that
member’s member-type in the form requested.

You specify the required form of the member-type by varying the last letter of the
function name, as shown below.

These member-type literals and keywords are defined in the definition of the
member-type in the UDS table. If any of the member-type literals are not defined, the
functions return the standard literal, which is mandatory.

Last Letter Information Returned

B The base member-type keyword

E The first encode keyword

I The first interrogate keyword

L The standard literal

P The plural literal

R The first report-down-to keyword

S The short literal

X The long literal

� � �MAX(�arg1,arg2)

,argn
<<<<<<<<

� � �MEMTYPEc(member-name) �

9 Functions

173

Example

literal #
memtypes(#PROCL2500#) gives INFO PANEL

if the current UDS table is DU001 and PROCL2500 is an INFOBANK-PANEL.

MIN

The MIN function returns the smallest value from the list of passed arguments.

A minimum of two arguments must be passed, but there is no limit to the maximum
number of arguments which may be passed.

Example

MIN(100,300,500,1000) returns 100

MPRAID

The MPRAID function returns a numeric value, which indicates whether the current top
level executive routine was initiated by input from the Command Area and/or a PF key.
The significance of the numeric values which may be returned are given in the table
below:

The MPRAID value identifies the particular PF key pressed, if applicable.

If the MPRAID value is 100 then data entry was initiated by means of the ENTER key.

MPRAID Value Command Line
Input

PFkey Input

1 to 24 No Yes

100 Yes No

101 to 124 Yes Yes

� � �MIN(�arg1,arg2)

,argn
<<<<<<<<

� � �MPRAID() �

 ASG-Manager Products Procedures Language

174

If MPRAID is any value other than 100 then data entry was initiated by a PF key.

MPRCMPW

The MPRCMPW function returns the password for the current Manager Products Logon
session.

MPRDDPW

The MPRDDPW function returns the password for the current repository, if any.

MPRSU

where su-code is a four character Selectable Unit Code.

The MPRSU function returns 1 if the specified Selectable Unit code is present at your
installation, or 0 if the selectable unit code is absent at your installation.

MPRUCLS

where current-user-class evaluates to one of these letters:

• A or a identifying systems administrator

• C or c identifying repository Controller

• G or g identifying guest Controller

• M or m identifying Master Operator

• U or u identifying general user

� � �MPRCMPW() �

� � �MPRDDPW() �

� � �MPRSU(su-code) �

� � �MPRUCLS(current-user-class) �

9 Functions

175

The MPRUCLS function returns the value 1 if the current user belongs to the specified
current-user-class, otherwise 0 is returned.

A user may belong to more than one current-user-class at the same time. For example, a
user may be a systems administrator and a guest Controller.

MPRUDSN

The MPRUDSN function returns the UDS Table name of the current repository.

NDATE

where x is I or O representing input and output format respectively.

The NDATE functions are used to reformat the date from your installations standard
format, as defined in the DCUST installation macro, to the ASG standard date format.

The standard ASG date format is YYYYDDD, where Y represents a year character and D
represents a day character, for example the 3rd February 1989 would be represented as
1989034.

The NDATEI function converts a date for input by a Manager Products command to the
ASG standard date format.

The NDATEO function converts a date as output by a Manager Products command to the
ASG standard date format.

Example

literal #
ndatei(#31 DEC 1991#) gives 1991365

if you are using the default date format settings as supplied, and user definable via
operands of the DCUST macro. (31 DEC was the 365th day of 1991.)

� � �MPRUDSN() �

� � �NDATEx(expression) �

 ASG-Manager Products Procedures Language

176

NTIME

where n is I or O representing input and output format respectively.

The NTIME functions are used to reformat the time from your installations standard
format, as defined in the DCUST installation macro, to the ASG standard time format.

The standard ASG time format is HHMMSSTH where:

• H represents an hour character

• M represents a minute character

• S represents a second character

• TH represents two thousands of a second characters.

For example, 4 hours, 26 minutes, 37 seconds and 352 thousands of a second would be
represented as 04263735.

The NTIMEI function converts the time for input to a Manager Products repository to the
ASG standard time format.

The NTIMEO function converts the time for output from a Manager Products repository
to the ASG standard time format.

Example

literal #
ntimeo(#11.20.05.01#) gives 11200501

if you are using the default time format settings as supplied, and user definable via
operands of the DCUST macro.

� � �NTIMEn(expression) �

9 Functions

177

OVERLAY

where options is:

The OVERLAY function returns the string target overlayed by the string new, where
new is padded or truncated to length, starting at character position n within target. If n
is beyond the end of target, target is first padded out to position n.

n defaults to 1. If set, it must be a non-negative number. length defaults to the length of
new. pad defaults to blank.

Examples

OVERLAY('','bneath',3) gives 'bn ath'
OVERLAY('','bneath',3,2) gives 'bn. th'
OVERLAY('ov','unda') gives 'ovda'
OVERLAY('ov','unda',4) gives 'undov'
OVERLAY('ov','unda',5,6,'+') gives 'und+ovr+++'

PACK

where integer is a value between -999999 and +999999.

The PACK function returns a word containing the packed decimal representation of the
numeric argument. The purpose of this function is to enable packed decimal fields to be
included within WRITEF directive output. No computational capability is provided.

Examples

PACK(99) gives '0000099C'
PACK(1234567) gives '1234567C'
PACK(-50) gives '0000050D'

� � �OVERLAY(new,target,options) �

� �

�

 ,
 n ,

 length ,pad

� �PACK(integer) �

 ASG-Manager Products Procedures Language

178

PARSABLE

where str evaluates to a string.

The PARSABLE function tells you if the string can be parsed under the current parsing
method. It returns 1 if the string can be parsed and 0 otherwise.

Refer to "Parsing" on page 18 for further details of parsing.

POS

The POS function returns the position of the first occurrence of the string page in another
string book. Searching begins at character position start and scans from left to right.
By default the search starts at the first character of book. 0 is returned if page is not
found in book.

Examples

POS('cat','location') gives 3
POS('cat','notfound') gives 0
POS(' ','not mis sing') gives 4
POS(' ','not mis sing',5) gives 8

PTIME

 The PTIME function returns the time in hh.mm.ss.ttt format (ttt is thousandths of
a second).

� � �PARSABLE(str) �

� � �POS(page,book �)
,start

� � �PTIME() �

9 Functions

179

REDUCE

The REDUCE function returns a reduced version of name. The first three characters of
the returned string are a return code. The normal return code is three zeroes.

name is a string of 1 to 80 characters. reduction-length is an integer between 1 and
50. If reduction-length is greater than the length of name then the original name is
returned unchanged. separator is a character that appears in name as a separator. It has
no default value.

REDUCE is typically used to reduce a member name so that it is valid in an external
environment. See the publication ASG-Manager Products Relational Technology
Support: SQL/DS for the rules of the reduction process.

Examples

literal #
reduce(#FREDERICK#,4) gives 000FRED
reduce(#SPECIAL-ORDER-DATE-MONTH#,15,#-#) gives 000SP-ORD-DAT-MONT

REPSTR

The REPSTR function replaces all occurrences of str2 in str1 by str3. Any of the
arguments can be null. str3 defaults to null.

Examples

REPSTR(aabbcc,bb,xx) gives aaxxcc
REPSTR(aabbcc,bb) gives aacc
REPSTR(12341234,4,99) gives 1239912399
REPSTR(’’,’’,xyz) gives xyz

� � �REDUCE(name,reduction-length �)
,separator

� � �REPSTR(str1 str2 �)
,str3

 ASG-Manager Products Procedures Language

180

REVERSE

The REVERSE function returns string, reversed end-to-end.

Example

REVERSE('back-to-front') gives 'tnorf-ot-kcab'

RIGHT

The RIGHT function returns a string of length containing the rightmost length
characters of string. The string returned is padded with pad characters on the left as
needed. If length is zero the null string is returned.

pad defaults to blank. length must be zero or a positive integer.

Examples

RIGHT('rechts',8,'.') gives '..rechts'
RIGHT('ladroite',7) gives 'adroite'

ROOT

The ROOT function returns the nth root of number, rounded up or down if necessary to
the nearest integer. (Up and down refer to the absolute value of the integer; that is, its sign
is not taken into account).

number is a value between -1073741824 and +1073741824. nth is a value between 1
and 15. round is d or D (for round result down) or u or U (for round result up). The
default value for round is D. When number is negative, nth must be odd. That is,
calculation of imaginary roots is not available.

� � �REVERSE(string) �

� � �RIGHT(string,length �)
,pad

� � �ROOT(number,nth �)
,round

9 Functions

181

Examples

ROOT(1728,3,d) gives 12
ROOT(-1730,3,u) gives -13

SEARCH

where options is:

The SEARCH function searches the array variable for an array element value
matching string. It returns the number of the first such array element it finds, or 0 if the
search fails. Searching begins at array element low and ends at array element high.

If c is set to M or m then string must equal the array element value for a match to be
found. If c is set to any other value then string need only be contained in the array
element value for a match to be found.

low defaults to the lowest array element number assigned. high defaults to the highest
array element number assigned. c defaults to null.

If string evaluates to null then SEARCH returns the number of the lowest unassigned
array element in the specified range.

Examples

LITERAL #
FRED(3) = #first string#
FRED(4) = #first#
FRED(6) = #second#
SEARCH(#FRED#,'first',,,m) gives 4
SEARCH(#FRED#,'first') gives 3
SEARCH(#FRED#,'first',4) gives 4
SEARCH(#FRED#,'thirst') gives 0
SEARCH(#FRED#,'',3) gives 5

� � �SEARCH(variable,string options) �

� �

 ,
low ,

 high ,c

 ASG-Manager Products Procedures Language

182

SERVERN

The SERVERN function returns the name of the current MPSF server. 2510

-1 is returned if the function is issued from a non-MPSF environment

-2 is returned if any argument is passed.

Example

servern()

STIME

The STIME function returns the current time in hundredths of a second measured from
midnight and provides a convenient way to calculate elapsed times. 2510

-1 is returned if any argument is passed.

Example

stime()

STRIP

where:

string is a string

options is:

� � �SERVERN() �

� � �STIME() �

� � �STRIP(string options) �

� �

 ,
'L' ,character
'T'
'B'

9 Functions

183

character is a single character.

The STRIP function removes leading, trailing, or both leading and trailing characters
from string string. The letters L, T and B have the following meanings:

If you omit the argument the default is B.

character specifies the character to be removed, with the default being a blank.

Examples

STRIP(' wash ') gives 'wash'
STRIP(' poker ','L') gives 'poker '
STRIP(' search ','T') gives ' search'

L To strip out leading characters

T To strip out trailing characters

B To strip out both leading and trailing characters.

 ASG-Manager Products Procedures Language

184

SUBSTRING
There are two versions of the substring function:

• SUBSTR function

• Implicit substring function.

ASG recommends that you use the SUBSTR function. The implicit function is retained
for upwards compatibility only.

SUBSTR Function

where options is:

The SUBSTR function returns the string of length length, padded as necessary by pad
characters, starting at position start of string string. length defaults to the number
of characters from position start to the end of string. pad defaults to blank.

Examples

SUBSTR('BOXES',2,2) gives 'OX'
SUBSTR('BOXES',3,2) gives 'XE'
SUBSTR('BOXES',2,6,'.') gives 'OXES..'

Implicit Substring Function
An implicit substring call is of the form:

variable-name(start,length)

where variable-name is the name of a variable, for example:

size(2,3)

or

USERVAR(A)(B,C)

where a substring is obtained of the value of element A in array USERVAR.

� � �SUBSTR(string,start options) �

� �

 ,
length ,pad

9 Functions

185

Examples

DAVE(2,2) gives AV

where DAVE is a literal.

&L1 = &L2(&L4,&L3)+&G20+100
&L1 = &L3(5,&L5(3,1))

SUBTASK
This is applicable only when a subtasking environment has been established. This
function returns details of currently attached Manager Products tasks.

SUBTASK Function

where valid values for argument1 are:

CCOD Returns the current value of the &CCOD system variable

COMMAND Returns the value of the current command sent to the task

CPUTIME Returns the cumulative CPU time (in seconds) used by the task

DEFINED Returns the number of subtasks available in the current subtasking
environment. The task number specified here (argument 2) must be 0
(Manager Products maintask)

DICTNAME Returns the name of the currently open dictionary

DISP Returns the status of the subtask and is one of the following:

INIT Not yet initialized

EXEC Executing

WAIT Waiting

LINECNT Returns the current output line count

LOGONID Returns the ControlManager logon identifier

NAME Returns the current subtask name

STATNAME Returns the current dictionary status name

USERNAME Returns the current dictionary user name

� � �SUBTASK(argument1,argument2) �

 ASG-Manager Products Procedures Language

186

argument2 is mandatory and must consist of a numeric value from 0 - 99 representing
the required task number. If 0 is specified then details of the Manager Products maintask
are returned, if applicable.

0 is invalid for these argument1 values:

CCOD
COMMAND
DISP
LINECNT
NAME.

A value of -1 is returned when the requested information is not available.

A value of -2 is returned when information is requested for a non-existent task.

A value of -3 is returned when a subtasking environment does not exist.

The SUBTASK function can be used by both the Manager Products maintask and all
subtasks.

Examples

SUBTASK(DICTNAME,3)Dictionary name for subtask 3

SUBTASK(STATNAME,0)Status name for maintask

SUBTASK(LINECNT,5)Output line count for subtask 5.

SUBTENV
This function is applicable only when a subtasking environment has been established.
This function returns the task identity of the current (issuing) tasks.

The value returned is one of:

0 Task is the Manager Products maintask

nn Task is the Manager Products subtask number nn

-3 Subtasking environment does not exist.

� � �SUBTENV() �

9 Functions

187

Example

SUBTENV()

TRANSLAT

where options is:

The TRANSLAT function translates specified characters in string string into other
characters or reorders them. out is the output translation table and inp is the input
translation table. The output table is padded with pad characters or truncated to the length
of the input table. The last character in the input table scanning from the left is the one
that is used if there are duplicates. string defaults to null. out defaults to null. pad
defaults to blank.

Examples

TRANSLAT('moron',&&,'o') gives 'm&r&n'
TRANSLAT('sloppy','if','os') gives 'flippy'
TRANSLAT('waste','xx','wast','.') gives 'xx..e'
TRANSLAT('scoundrel','','cud','+') gives 's+o+n+rel'

TRUNCATE

The TRUNCATE function truncates the source-string at the point given by the target
string. Truncation can be either from the left or right of the source string and the target
string can be included in or omitted from the truncation.

The optional third argument specifies either the first or last occurrence of the target string
as the truncation position and defaults to the first (F).

The optional fourth argument specifies either truncation on the left or right, defaulting to
left (L).

� � �TRANSLAT(options) �

� �string,
out

,inp
,pad

�

� � �TRUNCATE(source-string,target-string

� �

 ,F
 ,L

 ,L
 ,R

 ,I
 ,X

) �

 ASG-Manager Products Procedures Language

188

The optional fifth argument specifies whether the target string is to be included in or
excluded from the string when truncation occurs. The default is to include the target
string (I).

Examples

TRUNCATE(abcdefg,de) gives 'fg'
TRUNCATE(aabbccdd,c,L,R,I) gives 'aabbc'
TRUNCATE(xxxyyyzzz,yy,F,L,X) gives 'yyyzzz'

TYPE
There are two versions of the type function:

• The TYPE function

• The implicit type function.

ASG recommends that using the TYPE function. The implicit type function is only
retained for upwards compatibility.

The two versions are described below.

The TYPE Function

The TYPE function returns the type of the expression. The return value is one of the
following:

• C for character string

• N for numeric string

• U for null string.

Examples

request = &P3
IF TYPE(request) EQ N THEN GOTO NUMBER

TYPE(a)||b

where a and b are strings.

� � �TYPE(expression) �

9 Functions

189

Implicit Type Function

TYPE returns the type of the expression. It returns one of the following values:

• C for character string

• N for numeric string

• U for null string.

Example

request = &P3
IF TYPE request EQ N THEN GOTO NUMBER

UPPER

where string is a string.

The UPPER function returns the string string with all characters translated to
uppercase.

If the second argument is omitted, a standard lower to upper case translation takes place.
If the second argument is I then the input character translation set is used. If the second
argument is O then the output character translation set is used.

Refer to the ASG-ControlManager User’s Guide for more details of character translation.

Examples

literal #
/* 'a' = 81 in hexadecimal
/* 'A' = C1 in hexadecimal
MPR SET CHARACTER-TRANSLATION INPUT 81 C1 81 ;
upper('abCDe') gives ABCDE
upper(#a#) gives A
upper(#a#,i) gives a
upper(#a#,o) gives a

� � �TYPE expression �

� � �UPPER(string �)
 , I

 O

 ASG-Manager Products Procedures Language

190

VALUE

where:

expression1 evaluates to a variable name

expression2 evaluates to a positive integer.

The VALUE function returns the value of an element of a variable. It is particularly
useful when you have dynamically allocated variable names using the INTERPRET
directive.

There are two cases.

• VALUE(expression)

If expression evaluates to the name of a variable, VALUE returns the value of the
first element of that variable, otherwise VALUE returns the result of evaluating
expression.

• VALUE(expression1,expression2)

If expression1 evaluates to the name of a variable and expression2 evaluates
to a positive integer n, VALUE returns the value of the nth element of that variable.
It is invalid if expression2 does not evaluate to a positive integer.

Example 1

literal #
b = #data#
value(b) gives data

Example 2

literal #
a = #data#
a(2) = #data1#
b = #a#
value(b) gives data
value(b,1) gives data
value(b,2) gives data1
value(b,3) gives the null string

� � �VALUE(expression1 �)
,expression2

9 Functions

191

WORD

The WORD function returns the nth word in the string string. If there are less than n
words, the null string is returned. n must be a positive integer.

Examples

STRINGS = 'ABC DE F'
WORD(STRINGS,2) gives DE
STRINGS = '"ABC DE" F'
WORD(STRINGS,2) gives F

WORDINDX

The WORDINDX function returns the position of the nth word in the string string. If
there are less than n words in the string, 0 is returned. n must be a positive integer.

Examples

STRINGS = 'ABC DE F'
WORDINDX(STRINGS,2) gives 5
STRINGS = '"ABC DE" F'
WORDINDX(STRINGS,2) gives 10

WORDLEN

The WORDLEN function returns the length of the nth word in the string string. If there
are less than n words in the string, 0 is returned. n must be a positive integer.

Examples

STRINGS = 'ABC DE F'
WORDLEN(STRINGS,2) gives 2
STRINGS = '"ABC DE" F'
WORDLEN(STRINGS,2) gives 1

� � �WORD(string,n) �

� � �WORDINDX(string,n) �

� � �WORDLEN(string,n) �

 ASG-Manager Products Procedures Language

192

WORDS

The WORDS function returns the number of words in the string string.

Example

STRINGS = 'ABC DE F'
WORDS(STRINGS) gives 3
STRINGS = '"ABC DE" F'
WORDS(STRINGS) gives 2

� � �WORDS(string) �

193

10 10Debugging

This chapter includes these sections:

Introduction . 193

SET TRACE . 194
Procedures Language Trace: Selecting Procedures . 194
Procedures Language Trace: Selecting Variables. 195
Procedures Language Trace: Information Available . 196
Manager Products Trace: Information Available . 197
Examples . 197
Output Media . 198
SET TRACE Syntax . 198

QUERY TRACE . 199
QUERY TRACE Syntax. 200

Introduction
This chapter describes the SET and QUERY TRACE commands.

For further information on debugging tools available in Procedures Language, see the
following:

• VLIST directive (to display the contents of variables)

• TRACE directive (to display selected information while an executive routine
executes)

• SET ECHO ON command (to display each command before it is executed)

• SIGNAL ON ERROR directive (to trap error conditions generated by commands)

• SIGNAL ON SYNTAX directive (to trap error conditions generated by directives).

The directives listed here are described in Chapter 8, "Directives," on page 115. The SET
ECHO ON command is described in the ASG-ControlManager User’s Guide.

 ASG-Manager Products Procedures Language

194

SET TRACE
The SET TRACE command displays information as executive routines run, to help you
debug those routines; and to provide general Manager Products debug information for use
in problem resolution.

The SET TRACE command enables you to obtain debug information either for
Procedures Language executive routine execution or for Manager Products. The latter
application is unlikely to be used on a day-to-day basis, but may be helpful as part of
problem resolution, usually in conjunction with ASG personnel.

If you are debugging executive routines, you may limit tracing to particular procedures
and you may trace usage of specific variables in addition to obtaining a range of debug
information for each procedure. See also "TRACE" on page 144.

If you are performing a general Manager Products trace, you may limit tracing to
particular modules.

Procedures Language trace output may be directed to an external dataset or to the
terminal. Manager Products trace may be directed to an external dataset only.

The SET TRACE command is cumulative, so that any SET TRACE commands you issue
will remain in force until you switch tracing off or until you disable a particular option.
To do so, enter:

SET TRACE OFF;

Procedures Language Trace: Selecting Procedures
To obtain trace information for selected procedures, enter commands of the form:

SET TRACE PROCEDURES name-1, name-2 ON;

This command switches the trace facility on for procedures name-1 and name-2.

To switch tracing off, enter:

SET TRACE PROC name-1 OFF;

This command switches the trace facility off for procedure name-1.

You may enter the first few characters of a procedure name. In this case, all procedures
whose names begin with that abbreviation will be selected for tracing.

You may select all procedures for tracing by entering an asterisk (*) in place of a
procedure name.

10 Debugging

195

The keyword TRACE may be abbreviated to TR, and the keyword PROCEDURES may
be abbreviated to PR.

Procedures Language Trace: Selecting Variables
To trace variables selectively, enter commands of the form:

SET TRACE VARIABLES var-1, var-2 ON;

This command switches the trace facility on for variables var-1 and var-2.

To switch tracing off, enter:

SET TRACE VAR var-1 OFF;

This command switches the trace facility off for procedure var-1.

You may enter the first few characters of a variable name. In this case, all variables
whose names begin with that abbreviation will be selected for tracing.

You may select all procedures for tracing by entering an asterisk (*) in place of a
procedure name.

The keyword TRACE may be abbreviated to TR, and the keyword VARIABLES may be
abbreviated to VA.

The variable trace entry takes the following form:

V> variable(var-type,element) procedure(proc-type,line,access)
>>data<<

where:

V> identifies the trace record as a variable entry

variable is the name of the user-defined variable

var-type is the type of the variable:

element is the element number of the variable (* denotes all elements of the
variable)

C Command

G Global

L Local

P Profile

 ASG-Manager Products Procedures Language

196

procedure is the name of the procedure accessing the variable. An identifier
xxx=yyyyy refers to an ASG non-procedure component.

proc-type is the procedure type:

line is the current line number of the procedure

access is the variable access type:

data is the data read from or written to the variable

Procedures Language Trace: Information Available
The options available in Procedures Language tracing are as follows:

Using the options RESULTS or CPUTIME, with no others, also produces
INSTRUCTIONS output.

A Array

C Corporate executive

M ASG command
member

T Transient member

U User member

D Drop

R Read

S Specify

W Write

INSTRUCTIONS All lines are displayed as they are executed

ASSIGNS Only assignment and DROP, PARSE and RELEASE instructions
are displayed

COMMANDS Only Manager Products commands are displayed or MPR

LOGIC Only IF, DO, END, ITERATE, LEAVE, CALL, RETURN, EXIT,
GOTO instructions, and labels are displayed

RESULTS Displays the results of all expression evaluations for instructions
being displayed by other options

CPUTIME Displays CPU usage by command on a cumulative basis.

10 Debugging

197

When an instruction is displayed, it is prefixed by the line number of the executive
routine. A plus symbol (+) following the line number indicates that the displayed line is
broken into two or more lines in the original executive routine.

When a result is displayed (enclosed in single quotes) it is prefixed by >>>.

Manager Products Trace: Information Available
Manager Products trace facilities are provided to assist in problem resolution, normally
with the assistance of ASG personnel. It is unlikely that you will use these facilities under
other circumstances.

The options available in Manager Products tracing are as follows:

Trace output will be directed to an external dataset, if allocated.

To trace modules selectively, enter a command of the form:

SET TRACE MODULES module-1, module-2 ON;

Examples

SET TRACE PROC £PCM,MPDY ON; /* Trace procedures entered
SET TR PROC MYPROC ON;
SET TRACE PROCEDURES OFF; /* Cancel procedures trace
SET TRACE VARIABLES MPDY,MYVAR ON; /* Trace variables accessed
SET TR VAR MPCM_ARRAYGEN ON;

ALL Traces modules, Manager Products messages output, virtual storage
requests/releases, dynamic loads/releases, MPIN/MPOUT records

CORE Virtual storage requests/releases

LIO Dictionary logical block accesses

LIO-DATA Dictionary logical block accesses and data

LOAD Dynamic loads/releases

MESSAGES Manager Products messages output

MODULES Manager Products module calls

MPL Basic procedure trace with nesting levels and return codes

ON Minimum trace: MPIN/MPOUT records

PIO Dictionary physical block accesses

PIO-DATA Dictionary physical block accesses and data

RECOVERY Recovery dataset reads/writes

 ASG-Manager Products Procedures Language

198

SET TRACE VAR OFF; /* Cancel variables trace
SET TRACE COMMANDS ON; /* Trace commands executed
SET TRACE LOAD ON; /* Trace dynamic load/release

Output Media
By default, all trace output is directed to a ddname of MPTRACE. This name can be
changed by use of the DDNAME keyword. When specified, any currently open trace
dataset is closed and a new dataset opened. All previously specified trace options remain
in force.

The trace dataset is opened when the first valid SET TRACE command is issued,
specifying a valid trace option. Trace output is terminated and the trace dataset closed
when the SET TRACE OFF command is issued. Use the QUERY TRACE command at
any time to determine the trace options in effect.

To direct Procedures Language trace output to MPOUT (the terminal in online use),
specify a ddname of asterisk (*). If hardcopy output is also active, trace output will only
be written to the hardcopy dataset.

Manager Products trace output is never directed to MPOUT. If a ddname of MPOUT is in
use and Manager Products trace output is generated, that output will be directed to a trace
dataset using a standard ddname of MPTRACE.

Manager Products tracing is not available when executing under CICS. Furthermore,
because an external dataset cannot be easily allocated for each Manager Products user,
any Procedures Language trace output is displayed at the terminal.

SET TRACE Syntax

where:

ddname is a DDNAME. It can have a maximum of 8 characters

� � �SET TRACE

� �OFF
procl-trace
general-trace
DDNAME ddname

 *

� � �;
.

10 Debugging

199

procl-trace is:

name is the name of a procedure (maximum 10 characters) or a variable (maximum
50 characters)

general-trace is:

name is the name of a module (maximum 8 characters)

QUERY TRACE
The QUERY TRACE command displays Procedures Language and Manager Products
trace settings which are currently in force. Trace facilities are invoked by the SET
TRACE command. To display the current trace settings, enter the command:

QUERY TRACE;

The SET TRACE command is cumulative (that is, all trace options specified in a
sequence of SET TRACE commands remain in effect until they are switched off). The
QUERY TRACE command displays all such settings.

The keyword TRACE may be abbreviated to TR.

� �
ASSIGNS
CPUTIME
INSTRUCTIONS
LOGIC
MPR
COMMANDS

RESULTS
PROCEDURES
VARIABLES

ON
OFF

OFF
name ON

,name
<<<<< OFF

� �
ALL
CORE
LIO
LIO-DATA
LOAD

MPL
ON
PIO

ON
OFF

OFF
name ON

,name
<<<<< OFF

MESSAGES

PIO-DATA
RECOVERY
MODULES

 ASG-Manager Products Procedures Language

200

QUERY TRACE Syntax
� � �QUERY TRACE

 .
 ;

201

Glossary

Administration Dictionary
A repository controlled by the systems administrator. EXECUTIVE-ROUTINE members
are held in this repository.

Array
An identifiable set of elements where each element represents an item of data.

ASG-defined Variables
These are variables that have names defined by ASG. These are the ASG-defined
variables:

There are also system variables that are read-only and have values automatically assigned
by Manager Products.

Command Variables
These variables exist from their declaration until the highest level executive routine
terminates.

Corporate Executive Routine
A type of executive routine that can only be set up by the systems administrator. They can
be used, subject to access control, by all users.

Current Line
The top line of the data area when a buffer is displayed on the screen. There is always a
current line for the buffer being processed even when that buffer is not displayed on the
screen (as can occur when the contents of a buffer are processed by an executive routine).

&G Global Variables

&I Installation Variables

&L Local Variables

&P Parameters

ASG-Manager Products Procedures Language

202

Cursor Spatial Commands
Executive routines of this type are used with the system variable &CURS. The command
is usually entered by means of a PFkey. The value of &CURS is determined by the
position of the cursor on the screen.

Directives
These are instructions that either control instruction sequence within an executive
routine, or perform operations on data that is either internal to the executive routine or
supplied by the user in the form of parameters, for example GOTO, IF and WRITEL.

Executive Commands
They are the same as primary commands, in that they may operate on external data or
parameters supplied by the user. However, they may not be executed outside executive
routines, as they are only applicable within the context of executive routines. For
example, DACCESS is an executive command.

EXECUTIVE Members
These members reside in the MP-AID and can be used, subject to Access Control, by all
users.

Executive Routine
A generic term for corporate executive routine, user executive routine, or transient
executive routine.

EXECUTIVE-ROUTINE Members
These members reside in the Administration Dictionary. Once they have been
constructed by the systems administrator onto the MP-AID, they become EXECUTIVE
members on the MP-AID.

Function Call
An expression that returns a result. For example, the function call LENGTH('DRINK')
returns a value of 5, since the string given as parameter is five characters long.

Full Evaluation
Certain expressions, for example those given following a SAY directive, are subject to
Full Evaluation. Unlike Limited Evaluation arithmetic, expressions and functions are
evaluated.

Global Variables
These variables exist from their declaration until the end of the Manager Products
session. They may have ASG-defined names in the range &G0 to &G99 or they may
have user-defined names.

Installation Variables
These variables are assigned by the systems administrator during logon to Manager
Products and cannot be reassigned by the general user.

Glossary

203

Instruction
In an executive routine an instruction specifies an action that the software is to perform.
This comprises all components of an executive routine except for labels and comments.
Instructions may be directives, primary commands, or executive commands.

Limited Evaluation
Certain expressions, for example those given following a WRITEL directive, are subject
to Limited Evaluation. This differs from Full Evaluation in that arithmetic expressions
and functions are not evaluated.

Line Commands
Executive routines of this type are normally used with parameters, and are input in the
Line Command Area. The parameter values are derived from the contents of the
associated data line.

Local Variables
These variables exist from their declaration until the end of the executive routine in which
they were declared. They may have ASG-defined names in the range &L0 to &L99 or
they may have a user-defined name.

MP-AID
The Manager Products Administrative and Information Dataset.

Parameters
Values supplied when an executive routine is invoked.

Primary Commands
These commands operate on data that is either supplied by the user or is external to that
generated by the executive routine. Primary commands may be issued outside executive
routines in the Command Line or within executive routines. For example, LIST is a
primary command.

System Variables
These variables are automatically maintained by Manager Products and cannot be
changed by any user.

Systems Administrator
A systems administrator, through the Administration Dictionary and the MP-AID,
controls access to all Manager Products and repositories, and is responsible for the
configuration of the Manager Products environment.

Transient Executive Routine
This type of executive routine is set up by a user as a TRANSIENT member.

ASG-Manager Products Procedures Language

204

TR Members
Members of this type reside in the MP-AID. They are entered directly into the MP-AID
by individual users. TRANSIENTs are automatically deleted when the originating user
logs off from Manager Products.

User-assigned Variables
User-defined variables can be divided into two groups: variables that cannot be assigned
by the user (system variables) and variables that may be assigned by the user (all other
variable types).

User-defined Functions
Functions that may be written by users in a language other than the procedures language.

User-defined Variables
These are variables that have user-defined names (up to 50 alphanumeric characters
long).

User Executive Routine
This type of executive routine is set up by a user as a USER-MEMBER. It can only be
accessed by the originating user or a user having the same logon identifier as the
originating user.

USER-MEMBERs
Members of this type reside in the MP-AID. They are entered directly into the MP-AID
by individual users, and can be accessed only by the originating user or a user having the
same logon identifier as the originating user.

Variables
Locations to which names are assigned that allow data to be stored within executive
routines.

205

Index

Symbols
&BUFN 37
&CCOD 37
&CCOL 37
&COLO 38
&CURL 38
&CURS 38
&DATE 38
&DICT 38
&ECOD 39
&ENVM 39
&ENVT 40
&LINC 40
&LINO 40
&LOGO 40
&MODE 41
&MSLN 41
&MSLV 41
&MSNO 41
&MSTX 41
&PNUM 41
&PVAL 42
&SCOD 42
&STAT 42
&TIME 42
&TRMC 42
&TRMR 42
&USER 42

A
ABBREV function 155
ALIAS clause 86
All Occurrences routine 56
ARG function 156
ARRAYGEN executive command 64

syntax 65
ARRAYHI function 157
ARRAYLO function 157
arrays 31
ARRAYSORT executive command 65

syntax 66
ASG-defined variables 33

assignment
array to array 31

B
BUILD ARRAY command 68
BUILD executive command 66

syntax 69
BUILD KEPT-DATA command 67

C
CALL directive 116
CENTER function 158
character expressions 49
character sets 2
CLIENTI function 159
CLIENTN function 159
CLIENTU function 159
CLOSEF executive command 70

syntax 71
command area 24
COMMAND directive 118
command variables 33
comments 9
Compound Interest routine 59
concatenation operator 46
condition information 80
CONDITION keyword 80
continuation character 8
COPIES function 160
current status information 73
cursor spatial commands 26

example 27

D
DACCESS executive command 72

syntax 83
DB2TYPE function 160
debugging 16, 193
Decimal Conversion routine 55
delimiters

string 47
DEXPAND executive command 84

ASG-Manager Products Procedures Language

206

syntax 91
directives 115

CALL 116
COMMAND 118
DO 119
DROP 121
EXIT 121
general information 7
GLOBAL 122
GOTO 123
IF 123
INTERPRET 126
ITERATE 128
LEAVE 129
LITERAL 130
LOCAL 131
MESSAGE 131
MPR 133
MPRE 134
MPXX 134
NOP 135
PARSE 135
PARSEOPTION 137
PROFILE 137
RELEASE 138
RETAIN 140
RETURN 140
SAY 141
SET 141
SIGNAL 142
STACK 143
TRACE 144
TRANSFER 145
VLIST 146
WRITEF 149
WRITEL 151

DIVCAPT function 160
DIVOBJN function 161
DIVOBJT function 161
DO directive 119
DRELEASE executive command 91

syntax 93
DRETRIEVE executive command 94

syntax 105
DROP directive 121

E
EDDATE function 161
EDTIME function 163
efficiency 20
evaluation

full 47
limited 48

examples

cursor spatial commands 27
executive routines 51
line commands 25
switching output 34

execution control 10
executive commands

ARRAYGEN 64
ARRAYSORT 65
BUILD 66
CLOSEF 70
DACCESS 72
DEXPAND 84
DRELEASE 91
DRETRIEVE 94
RELINQUISH 106
RESERVE 107
SENDF 108
SREAD 113

executive routines
corporate 21
examples 51
running

from Command Area 24
from Line Command area 24

transient 24
user 24

EXECUTIVE-ROUTINE members 23
EXIT directive 121
expanding member for particular

language 85
expressions 45

character 49
numeric 49

EXTRACT function 163

F
FASTQUIT routine 54
FDO function 166
functions

ABBREV 155
ARG 156
ARRAYHI 157
ARRAYLO 157
CENTER 158
CLIENTI 159
CLIENTN 159
CLIENTU 159
COPIES 160
DB2TYPE 160
DIVCAPT 160
DIVOBJN 161
DIVOBJT 161
EDDATE 161
EDTIME 163

Index

207

EXTRACT 163
FDO 166
general information 12
GETSVRM 167
GETTOKEN 168
GETUDSN 168
HEX 169
INSERT 169
LASTPOS 170
LEFT 170
LENGTH 170
LOWER 171
MAX 172
MEMTYPE 172
MIN 173
MPRAID 173
MPRCMPW 174
MPRDDPW 174
MPRSU 174
MPRUCLS 174
MPRUDSN 175
NDATE 175
NTIME 176
OVERLAY 177
PARSABLE 178
POS 178
PTIME 178
REDUCE 179
REPSTR 179
REVERSE 180
RIGHT 180
ROOT 180
SEARCH 181
SERVERN 182
STIME 182
STRIP 182
SUBSTRING 184
SUBTASK 185
SUBTENV 186
TRANSLAT 187
TRUNCATE 187
TYPE 188
UPPER 189
user-defined 13
VALUE 190
WORD 191
WORDINDX 191
WORDLEN 191
WORDS 192

G
GETSVRM function 167
GETTOKEN function 168
GETUDSN function 168

GLOBAL directive 122
global variables 34
glossary 201
GOTO directive 123

H
HEX function 169
history information 73

I
IF directive 123
INSERT function 169
installation variables 36
INTERPRET directive 126
ISPF command examples 60
ITERATE directive 128

L
labels 7
language

expanding for a particular 85
LASTPOS function 170
LEAVE directive 129
LEFT function 170
LENGTH function 170
line commands 24

example 25
LITERAL directive 130
LOCAL directive 131
local variables 35
LOWER function 171

M
MAX function 172
MEMTYPE function 172
MESSAGE directive 131
MIN function 173
MP-AID Copy routine 51
MP-AID List, Condensed example 52
MPR directive 133
MPRAID function 173
MPRCMPW function 174
MPRDDPW function 174
MPRE directive 134
MPRSU function 174
MPRUCLS function 174
MPRUDSN function 175
MPXX directive 134

N
name conflicts 27
NDATE function 175
NOP directive 135

ASG-Manager Products Procedures Language

208

NTIME function 176
numeric expressions 49

O
operators 45
OVERLAY function 177
Overlay routine 57

P
PARSABLE function 178
PARSE directive 135
PARSEOPTION directive 137
parsing 18
PF Key Settings routine 58
POS function 178
PROFILE directive 137
profile variables 34
PTIME function 178

Q
QUERY TRACE command 199

syntax 200
Quick Sign On routine 54

R
readability 20
REDUCE function 179
RELEASE directive 138
RELINQUISH executive command 106

syntax 107
REPSTR function 179
RESERVE executive command 107

syntax 108
RETAIN directive 140
return codes 42
RETURN directive 140
REVERSE function 180
RIGHT function 180
ROOT function 180

S
SAY directive 141
SEARCH function 181
security information 73
SENDF executive command 108

syntax 112
SERVERN function 182
SET directive 141
SET TRACE command 194

syntax 198
SHOW MEMBER-TYPE command 94
SIGNAL directive 142
SREAD executive command 113

syntax 114
STACK directive 143
STIME function 182
STRIP function 182
SUBSTRING function 184
SUBTASK function 185
SUBTENV functions 186
SUPPRESS clause 77
system varaibles

&DICT 38
&ENVM 39

system variables 37
&BUFN 37
&CCOD 37
&CCOL 37
&COLO 38
&CURL 38
&CURS 38
&DATE 38
&ECOD 39
&ENAM 39
&ENVT 40
&LINC 40
&LINO 40
&LOGO 40
&MODE 41
&MSLN 41
&MSLV 41
&MSNO 41
&MSTX 41
&PNUM 41
&PVAL 42
&SCOD 42
&STAT 42
&TIME 42
&TRMC 42
&TRMR 42
&USER 42

T
TRACE directive 144
TRANSFER directive 145
TRANSLAT function 187
TRUNCATE function 187
TYPE function 188

U
UPPER function 189
user-defined commands 2
user-defined variables 31

V
VALUE function 190

Index

209

variables
array 31
ASG-defined 33
command 33
global 34
installation 36
local 35
naming rules 31
parameter 36
profile 34
releasing rules 92
summary 30
system 37
system-assigned 33
user-assigned 33
user-defined 31

VLIST directive 146

W
WITH STATUS-DETAILS clause 76
WORD function 191
WORDINDX function 191
WORDLEN function 191
WORDS function 192
WRITEF directive 149
WRITEL directive 151

ASG-Manager Products Procedures Language

210

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	Introduction
	User-defined Commands

	Basic Concepts
	Setting Up Executive Routines
	Using Executive Routines
	From the Command Area
	Line Command
	Cursor Spatial Command

	Components Of Executive Routines
	Directives
	Labels
	Comments
	Variables
	Execution Control
	Functions
	User-defined Functions
	COBOL Argument Block
	PL/I Argument Block
	Assembler Argument Block
	General Notes on Argument Blocks

	Outputting Information
	Manipulating Buffers
	Debugging
	Parsing
	Efficiency And Readability

	Setting Up And Using Executive Routines
	Introduction
	Corporate Executive Routines
	Setting Up EXECUTIVE-ROUTINE Members
	User And Transient Executive Routines
	Executing Executive Routines From The Command Area
	Line Commands
	Line Commands Example
	Cursor Spatial Commands
	Cursor Spatial Commands Example
	Using Prefix Commands/Resolving Name Conflicts

	Variables
	Variables and Parameters
	User-defined Variables
	Arrays
	ASG-defined Variables
	System-assigned Variables
	User-assigned Variables

	Command Variables
	Profile Variables
	Global Variables
	Local Variables
	Installation Variables
	Parameter Variables
	System Variables
	&BUFN
	&CCOD
	&CCOL
	&COLO
	&CROW
	&CURL
	&CURS
	&DATE
	&DICT
	&ECOD
	&ENAM
	&ENVO
	&ENVM
	&ENVT
	&LINC
	&LINO
	&LOGO
	&MODE
	&MSLN
	&MSLV
	&MSNO
	&MSTX
	&PNUM
	&PVAL
	&SCOD
	&STAT
	&TIME
	&TRMC
	&TRMR
	&USER

	Return Codes

	Expressions
	Introduction
	Full Evaluation
	Limited Evaluation
	Character Expressions
	Numeric Expressions

	Example Executive Routines
	MP-AID Copy (PROCL-01)
	Condensed MP-AID List (PROCL-02)
	FASTQUIT (PROCL-03)
	Quick Sign On (PROCL-04)
	Decimal Conversion (PROCL-05)
	All Occurrences (PROCL-06)
	Overlay (PROCL-07)
	PF Key Settings (PROCL-08)
	Compound Interest (PROCL-09)
	ISPF Read, Write and Edit
	ISPF Variables

	Executive Commands
	ARRAYGEN
	ARRAYGEN Syntax

	ARRAYSORT
	ARRAYSORT Syntax

	BUILD
	Building a KEPT-DATA List from an Array
	Building an Array from a KEPT-DATA List
	BUILD Syntax

	CLOSEF
	CLOSEF Syntax

	DACCESS
	Obtaining Security, Current Status, and History Information
	Obtaining Full Status Information
	Suppressing Information
	Maintaining Variables for Two or More Members
	Obtaining Condition Information
	Example
	DACCESS Syntax

	DEXPAND
	Expanding a Member for a Particular Language
	Using a Specific Form and Version of Any Processed Items
	Generating Local Names as Variables
	Giving Specified Alias Names
	Example
	Maintaining Variables for Two or More Members
	DEXPAND Syntax

	DRELEASE
	Rules on Releasing Variables
	DRELEASE Syntax

	DRETRIEVE
	Retrieving Repeating Clauses
	Retrieving Used-By or Reference Information
	Example 1
	Example 2
	Specifying Variable Names
	Suppressing Information
	Accessing DEXPANDed Information
	Example
	Retrieving Unique Key Identifiers
	Maintaining Variables for Two or More Members
	DRETRIEVE Syntax

	RELINQUISH
	RELENQUISH Syntax

	RESERVE
	RESERVE Syntax

	SENDF
	Sending Output to a USER-MEMBER
	Sending Output to a Sequential Dataset
	Sending Output to a Partitioned Dataset
	SENDF Syntax

	SREAD
	SREAD Syntax

	Directives
	CALL
	CALL label-name Option
	CALL ARRAY Option

	COMMAND
	DO
	DROP
	EXIT
	Example 1
	Example 2

	GLOBAL
	GOTO
	Examples

	IF
	Example 1
	Example 2
	Example 3
	Example 4

	INTERPRET
	Example 1
	Example 2
	Example 3

	ITERATE
	Example

	LEAVE
	Example

	LITERAL
	LOCAL
	MESSAGE
	Example 1
	Example 2

	MPR
	MPRE
	MPXX
	Example

	NOP
	PARSE
	Example 1
	Example 2

	PARSEOPTION
	PROFILE
	RELEASE
	Erasing All Variables of a Particular Type
	Erasing a Selection of Variables of a Particular Type
	RELEASE Syntax

	RETAIN
	RETURN
	SAY
	SET
	Examples

	SIGNAL
	STACK
	TRACE
	Example

	TRANSFER
	VLIST
	Listing Particular Variables
	Listing All Variables of a Particular Type
	Listing a Selection of Variables of a Particular Type
	Examples
	VLIST Syntax

	WRITEF
	WRITEL
	Example 1
	Example 2
	Listing Particular Variables
	Listing All Variables of a Particular Type
	Listing a Selection of Variables of a Particular Type

	Functions
	ABBREV
	Examples

	ARG
	Examples

	ARRAYHI
	Example

	ARRAYLO
	Example

	BIN
	Examples

	CENTER
	Examples

	CLIENTI
	Example

	CLIENTN
	Example

	CLIENTU
	Example

	COPIES
	Examples

	DB2TYPE
	DIVCAPT
	Examples

	DIVOBJN
	Example

	DIVOBJT
	Example

	EDDATE
	Example

	EDTIME
	Example

	EXTRACT
	DSN Keyword
	Primary Command Keyword
	Examples
	LCOFF Keyword

	FDO
	Example

	GETSVRM
	Examples

	GETTOKEN
	Example

	GETUDSN
	Example

	HEX
	Examples

	INSERT
	Examples

	LASTPOS
	Examples

	LEFT
	Examples

	LENGTH
	LENGTH function
	Implicit Length Function

	LOWER
	Examples

	MAX
	Example

	MEMTYPE
	Example

	MIN
	Example

	MPRAID
	MPRCMPW
	MPRDDPW
	MPRSU
	MPRUCLS
	MPRUDSN
	NDATE
	Example

	NTIME
	Example

	OVERLAY
	Examples

	PACK
	Examples

	PARSABLE
	POS
	Examples

	PTIME
	REDUCE
	Examples

	REPSTR
	Examples

	REVERSE
	Example

	RIGHT
	Examples

	ROOT
	Examples

	SEARCH
	Examples

	SERVERN
	Example

	STIME
	Example

	STRIP
	Examples

	SUBSTRING
	SUBSTR Function
	Implicit Substring Function

	SUBTASK
	SUBTASK Function

	SUBTENV
	Example

	TRANSLAT
	Examples

	TRUNCATE
	Examples

	TYPE
	The TYPE Function
	Implicit Type Function

	UPPER
	Examples

	VALUE
	Example 1
	Example 2

	WORD
	Examples

	WORDINDX
	Examples

	WORDLEN
	Examples

	WORDS
	Example

	Debugging
	Introduction
	SET TRACE
	Procedures Language Trace: Selecting Procedures
	Procedures Language Trace: Selecting Variables
	Procedures Language Trace: Information Available
	Manager Products Trace: Information Available
	Examples
	Output Media
	SET TRACE Syntax

	QUERY TRACE
	QUERY TRACE Syntax

	Glossary

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

